Search Results

Now showing 1 - 2 of 2
  • Item
    The influence of Mg doping on the nucleation of self-induced GaN nanowires
    (New York : American Institute of Physics, 2012) Limbach, F.; Caterino, R.; Gotschke, T.; Stoica, T.; Calarco, R.; Geelhaar, L.; Riechert, H.
    GaN nanowires were grown without any catalyst by plasma-assisted molecular beam epitaxy. Under supply of Mg, nanowire nucleation is faster, the areal density of wires increases to a higher value, and nanowire coalescence is more pronounced than without Mg. During nanowire nucleation the Ga desorption was monitored insitu by line-of-sight quadrupolemass spectrometry for various substrate temperatures. Nucleation energies of 4.0±0.3 eV and 3.2±0.3 eV without and with Mg supply were deduced, respectively. This effect has to be taken into account for the fabrication of nanowire devices and could be employed to tune the NW areal density.
  • Item
    Ferroelectric switching in epitaxial GeTe films
    (New York : American Institute of Physics, 2014) Kolobov, A.V.; Kim, D.J.; Giussani, A.; Fons, P.; Tominaga, J.; Calarco, R.; Gruverman, A.
    In this paper, using a resonance-enhanced piezoresponse force microscopy approach supported by density functional theory computer simulations, we have demonstrated the ferroelectric switching in epitaxial GeTe films. It has been shown that in films with thickness on the order of several nanometers reversible reorientation of polarization occurs due to swapping of the shorter and longer Ge-Te bonds in the interior of the material. It is also hinted that for ultra thin films consisting of just several atomic layers weakly bonded to the substrate, ferroelectric switching may proceed through exchange of Ge and Te planes within individual GeTe layers.