Search Results

Now showing 1 - 2 of 2
  • Item
    On the electrolyte convection around a hydrogen bubble evolving at a microelectrode under the influence of a magnetic field
    (Pennington, NJ : ECS, 2016) Baczyzmalski, Dominik; Karnbach, Franziska; Yang, Xuegeng; Mutschke, Gerd; Uhlemann, Margitta; Eckert, Kerstin; Cierpka, Christian
    Water electrolysis was carried out in a 1 M H2SO4 solution under different potentiostatic conditions in the presence of a magnetic field oriented normal to the horizontal microelectrode (100 μm in diameter). The imposed magnetohydrodynamic (MHD) electrolyte flow around the evolving hydrogen bubble was studied to clarify the effect on the detachment of the bubble from the electrode and the mass transfer toward the electrode. Different particle imaging and tracking techniques were applied to measure the three-dimensional flow in the bulk of the cell as well as in close vicinity of the evolving bubble. The periodic bubble growth cycle was analyzed by measurements of the current oscillations and microscopic high-speed imaging. In addition, a numerical study of the flow was conducted to support the experimental results. The results demonstrate that the MHD flow imposes only a small stabilizing force on the bubble. However, the observed secondary flow enhances the mass transfer toward the electrode and may reduce the local supersaturation of dissolved hydrogen.
  • Item
    Role of 1,3-dioxolane and LiNO3 addition on the long term stability of nanostructured silicon/carbon anodes for rechargeable lithium batteries
    (Pennington, NJ : ECS, 2016) Jaumann, Tony; Balach, Juan; Klose, Markus; Oswald, Steffen; Eckert, Jürgen; Giebeler, Lars
    In order to utilize silicon as alternative anode for unfavorable lithium metal in lithium – sulfur (Li–S) batteries, a profound understanding of the interfacial characteristics in ether-based electrolytes is required. Herein, the solid electrolyte interface (SEI) of a nanostructured silicon/carbon anode after long-term cycling in an ether-based electrolyte for Li–S batteries is investigated. The role of LiNO3 and 1,3-dioxolane (DOL) in dimethoxy ethane (DME) solutions as typically used electrolyte components on the electrochemical performance and interfacial characteristics on silicon are evaluated. Because of the high surface area of our nanostructured electrode owing to the silicon particle size of around 5 nm and the porous carbon scaffold, the interfacial characteristics dominate the overall electrochemical reversibility opening a detailed analysis. We show that the use of DME/DOL solutions under ambient temperature causes higher degradation of electrolyte components compared to carbonate-based electrolytes used for Li–ion batteries (LIB). This behavior of DME/DOL mixtures is associated with different SEI component formation and it is demonstrated that LiNO3 addition can significantly stabilize the cycle performance of nanostructured silicon/carbon anodes. A careful post-mortem analysis and a discussion in context to carbonate-based electrolyte solutions helps to understand the degradation mechanism of silicon-based anodes in rechargeable lithium-based batteries.