Search Results

Now showing 1 - 2 of 2
  • Item
    Prenormative verification and validation of a protocol for measuring magnetite–maghemite ratios in magnetic nanoparticles
    (Sèvres : Bureau, 2021) Bogart, Lara K.; Fock, Jeppe; da Costa, Geraldo M.; Witte, Kerstin; Greneche, Jean-Marc; Zukrowski, Jan; Sikora, Marcin; Latta, Drew E.; Scherer, Michelle M.; Hansen, Mikkel Fougt; Frandsen, Cathrine; Pankhurst, Quentin A.
    An important step in establishing any new metrological method is a prenormative interlaboratory study, designed to verify and validate the method against its stated aims. Here, the 57Fe Mössbauer spectrometric ‘centre of gravity’ (COG) method was tested as a means of quantifying the magnetite/maghemite (Fe3O4/γ-Fe2O3) composition ratio in biphasic magnetic nanoparticles. The study involved seven laboratories across Europe and North and South America, and six samples—a verification set of three microcrystalline mixtures of known composition, and a validation set of three nanoparticle samples of unknown composition. The spectra were analysed by each participant using in-house fitting packages, and ex post facto by a single operator using an independent package. Repeatability analysis was performed using Mandel’s h statistic and modified Youden plots. It is shown that almost all (83/84) of the Mandel h statistic values fall within the 0.5% significance level, with the one exception being borderline. Youden-based pairwise analysis indicates the dominance of random uncertainties; and in almost all cases the data analysis phase is only a minor contributor to the overall measurement uncertainty. It is concluded that the COG method is a robust and promising candidate for its intended purpose.
  • Item
    A new generation of 99.999% enriched 28Si single crystals for the determination of Avogadro's constant
    (Sèvres : Bureau, 2017) Abrosimov, N.V.; Aref’ev, D.G.; Becker, P.; Bettin, H.; Bulanov, A.D.; Churbanov, M.F.; Filimonov, S.V.; Gavva, V.A.; Godisov, O.N.; Gusev, A.V.; Kotereva, T.V.; Nietzold, D.; Peters, M.; Potapov, A.M.; Pohl, H.-J.; Pramann, A.; Riemann, H.; Scheel, P.-T.; Stosch, R.; Wundrack, S.; Zakel, S.
    A metrological challenge is currently underway to replace the present definition of the kilogram. One prerequisite for this is that the Avogadro constant, NA, which defines the number of atoms in a mole, needs to be determined with a relative uncertainty of better than 2  ×  10−8. The method applied in this case is based on the x-ray crystal density experiment using silicon crystals. The first attempt, in which silicon of natural isotopic composition was used, failed. The solution chosen subsequently was the usage of silicon highly enriched in 28Si from Russia. First, this paper reviews previous efforts from the very first beginnings to an international collaboration with the goal of producing a 28Si single crystal with a mass of 5 kg, an enrichment greater than 0.9999 and of sufficient chemical purity. Then the paper describes the activities of a follow-up project, conducted by PTB, to produce a new generation of highly enriched silicon in order to demonstrate the quasi-industrial and reliable production of more than 12 kg of the 28Si material with enrichments of five nines. The intention of this project is also to show the availability of 28Si single crystals as a guarantee for the future realisation of the redefined kilogram.