Search Results

Now showing 1 - 3 of 3
  • Item
    Self-propelled micromotors for cleaning polluted water
    (Washington, DC : ACS, 2013) Soler, L.; Magdanz, V.; Fomin, V.M.; Sanchez, S.; Schmidt, O.G.
    We describe the use of catalytically self-propelled microjets (dubbed micromotors) for degrading organic pollutants in water via the Fenton oxidation process. The tubular micromotors are composed of rolled-up functional nanomembranes consisting of Fe/Pt bilayers. The micromotors contain double functionality within their architecture, i.e., the inner Pt for the self-propulsion and the outer Fe for the in situ generation of ferrous ions boosting the remediation of contaminated water.The degradation of organic pollutants takes place in the presence of hydrogen peroxide, which acts as a reagent for the Fenton reaction and as main fuel to propel the micromotors. Factors influencing the efficiency of the Fenton oxidation process, including thickness of the Fe layer, pH, and concentration of hydrogen peroxide, are investigated. The ability of these catalytically self-propelled micromotors to improve intermixing in liquids results in the removal of organic pollutants ca. 12 times faster than when the Fenton oxidation process is carried out without catalytically active micromotors. The enhanced reaction-diffusion provided by micromotors has been theoretically modeled. The synergy between the internal and external functionalities of the micromotors, without the need of further functionalization, results into an enhanced degradation of nonbiodegradable and dangerous organic pollutants at small-scale environments and holds considerable promise for the remediation of contaminated water.
  • Item
    Electrically-Pumped Wavelength-Tunable GaAs Quantum Dots Interfaced with Rubidium Atoms
    (Washington, DC : ACS, 2017) Huang, Huiying; Trotta, Rinaldo; Huo, Yongheng; Lettner, Thomas; Wildmann, Johannes S.; Martín-Sánchez, Javier; Huber, Daniel; Reindl, Marcus; Zhang, Jiaxiang; Zallo, Eugenio; Schmidt, Oliver G.; Rastelli, Armando
    We demonstrate the first wavelength-tunable electrically pumped source of nonclassical light that can emit photons with wavelength in resonance with the D2 transitions of 87Rb atoms. The device is fabricated by integrating a novel GaAs single-quantum-dot light-emitting diode (LED) onto a piezoelectric actuator. By feeding the emitted photons into a 75 mm long cell containing warm 87Rb vapor, we observe slow-light with a temporal delay of up to 3.4 ns. In view of the possibility of using 87Rb atomic vapors as quantum memories, this work makes an important step toward the realization of hybrid-quantum systems for future quantum networks.
  • Item
    Evidence of the Anomalous Fluctuating Magnetic State by Pressure-Driven 4f Valence Change in EuNiGe3
    (Washington, DC : ACS, 2023) Chen, K.; Luo, C.; Zhao, Y.; Baudelet, F.; Maurya, A.; Thamizhavel, A.; Rößler, U. K.; Makarov, D.; Radu, F.
    In rare-earth compounds with valence fluctuation, the proximity of the 4f level to the Fermi energy leads to instabilities of the charge configuration and the magnetic moment. Here, we provide direct experimental evidence for an induced magnetic polarization of the Eu3+ atomic shell with J = 0, due to intra-atomic exchange and spin-orbital coupling interactions with the Eu2+ atomic shell. By applying external pressure, a transition from antiferromagnetic to a fluctuating behavior in EuNiGe3 single crystals is probed. Magnetic polarization is observed for both valence states of Eu2+ and Eu3+ across the entire pressure range. The anomalous magnetism is discussed in terms of a homogeneous intermediate valence state where frustrated Dzyaloshinskii-Moriya couplings are enhanced by the onset of spin-orbital interaction and engender a chiral spin-liquid-like precursor.