Search Results

Now showing 1 - 3 of 3
  • Item
    Hydrolysis Stability of Bidentate Phosphites Utilized as Modifying Ligands in the Rh-Catalyzed n-Regioselective Hydroformylation of Olefins
    (Washington, DC : ACS, 2016) Zhang, Baoxin; Jiao, Haijun; Michalik, Dirk; Kloß, Svenja; Deter, Lisa Marie; Selent, Detlef; Spannenberg, Anke; Franke, Robert; Börner, Armin
    The stability of ligands and catalysts is an almost neglected issue in homogeneous catalysis, but it is crucial for successful application of this methodology in technical scale. We have studied the effect of water on phosphites, which are the most applied cocatalysts in the n-regioselective homogeneous Rh-catalyzed hydroformylation of olefins. The stability of the bidentate nonsymmetrical diphosphite L1, as well as its two monophosphite constituents L2 and L3, toward hydrolysis was investigated by means of in situ NMR spectroscopy under similar conditions as applied in industry. Hydrolysis pathways, intermediates, and kinetics were clarified. DFT calculations were used to support the experimentally found data. The acylphosphite unit L2, which reacts with water in an unselective manner, was proven to be much less stable than the phenolphosphite L3. The stability of the bidentate ligand L1 can be therefore mainly attributed to its phenolphosphite moiety. With an excess of water, the hydrolysis of L1 and L2 as well as their Rh-complexes is first-order with respect to the phosphite. Surprisingly, coordination to Rh significantly stabilizes the monodentate ligand L2, while in strong contrast, the bidentate ligand L1 decomposes faster in the Rh complex. NMR spectroscopy provided evidence for the existence of species from decomposition of phosphites, which can likewise coordinate as ligands to the metal. Electron-withdrawing groups in the periphery of the acylphosphite moiety decrease the stability of L1, whereas 3,5-disubstituted salicylic acid derivatives with bulky groups showed superior stability. These modifications of L1 also give rise to different catalytic performances in the n-regioselective hydroformylation of n-octenes and 2-pentene, from which the 3,5-di-t-butyl-substituted ligand offered a higher n-regioselectivity accompanied by a lowering of the reaction rate in comparison to the parent ligand L1.
  • Item
    Unraveling the H2 Promotional Effect on Palladium-Catalyzed CO Oxidation Using a Combination of Temporally and Spatially Resolved Investigations
    (Washington, DC : ACS, 2018) Stewart, Caomhán; Gibson, Emma K.; Morgan, Kevin; Cibin, Giannantonio; Dent, Andrew J.; Hardacre, Christopher; Kondratenko, Evgenii V.; Kondratenko, Vita A.; McManus, Colin; Rogers, Scott; Stere, Cristina E.; Chansai, Sarayute; Wang, Yi-Chi; Haigh, Sarah J.; Wells, Peter P.; Goguet, Alexandre
    The promotional effect of H2 on the oxidation of CO is of topical interest, and there is debate over whether this promotion is due to either thermal or chemical effects. As yet there is no definitive consensus in the literature. Combining spatially resolved mass spectrometry and X-ray absorption spectroscopy (XAS), we observe a specific environment of the active catalyst during CO oxidation, having the same specific local coordination of the Pd in both the absence and presence of H2. In combination with Temporal Analysis of Products (TAP), performed under isothermal conditions, a mechanistic insight into the promotional effect of H2 was found, providing clear evidence of nonthermal effects in the hydrogen-promoted oxidation of carbon monoxide. We have identified that H2 promotes the Langmuir-Hinshelwood mechanism, and we propose this is linked to the increased interaction of O with the Pd surface in the presence of H2. This combination of spatially resolved MS and XAS and TAP studies has provided previously unobserved insights into the nature of this promotional effect.
  • Item
    Tracing Active Sites in Supported Ni Catalysts during Butene Oligomerization by Operando Spectroscopy under Pressure
    (Washington, DC : ACS, 2016) Rabeah, Jabor; Radnik, Jörg; Briois, Valérie; Maschmeyer, Dietrich; Stochniol, Guido; Peitz, Stephan; Reeker, Helene; La Fontaine, Camille; Brückner, Angelika
    Supported Ni catalysts have been studied during the dimerization of butenes by operando electron paramagnetic resonance (EPR) and in situ X-ray absorption spectroscopy (XAS) at 353 K and up to 16 bar. Single NiI/NiII shuttles were identified as active sites, whereby the conversion of initial NiI to NiII by oxidative addition of butene is obviously faster than the re-reduction of NiII to NiI by reductive elimination of the C8 product, rendering the equilibrium percentage of NiI small. At p ≤ 2 bar, NiI single sites form inactive Ni0 aggregates, while this is suppressed at higher pressure (∼12 bar). A reaction mechanism is proposed.