Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Mechanistic Understanding of the Heterogeneous, Rhodium-Cyclic (Alkyl)(Amino)Carbene-Catalyzed (Fluoro-)Arene Hydrogenation

2020, Moock D., Wiesenfeldt M.P., Freitag M., Muratsugu S., Ikemoto S., Knitsch R., Schneidewind J., Baumann W., Schäfer A.H., Timmer A., Tada M., Hansen M.R., Glorius F.

Recently, chemoselective methods for the hydrogenation of fluorinated, silylated, and borylated arenes have been developed providing direct access to previously unattainable, valuable products. Herein, a comprehensive study on the employed rhodium-cyclic (alkyl)(amino)carbene (CAAC) catalyst precursor is disclosed. Mechanistic experiments, kinetic studies, and surface-spectroscopic methods revealed supported rhodium(0) nanoparticles (NP) as the active catalytic species. Further studies suggest that CAAC-derived modifiers play a key role in determining the chemoselectivity of the hydrogenation of fluorinated arenes, thus offering an avenue for further tuning of the catalytic properties. Copyright © 2020 American Chemical Society.

Loading...
Thumbnail Image
Item

Selective Earth-Abundant System for CO2 Reduction: Comparing Photo- and Electrocatalytic Processes

2019, Steinlechner C., Roesel A.F., Oberem E., Päpcke A., Rockstroh N., Gloaguen F., Lochbrunner S., Ludwig R., Spannenberg A., Junge H., Francke R., Beller M.

The valorization of CO2 via photo- or electrocatalytic reduction constitutes a promising approach toward the sustainable production of fuels or value-added chemicals using intermittent renewable energy sources. For this purpose, molecular catalysts are generally studied independently with respect to the photo- or the electrochemical application, although a unifying approach would be much more effective with respect to the mechanistic understanding and the catalyst optimization. In this context, we present a combined photo- and electrocatalytic study of three Mn diimine catalysts, which demonstrates the synergistic interplay between the two methods. The photochemical part of our study involves the development of a catalytic system containing a heteroleptic Cu photosensitizer and the sacrificial BIH reagent. The system shows exclusive selectivity for CO generation and renders turnover numbers which are among the highest reported thus far within the group of fully earth-abundant photocatalytic systems. The electrochemical part of our investigations complements the mechanistic understanding of the photochemical process and demonstrates that in the present case the sacrificial reagent, the photosensitizer, and the irradiation source can be replaced by the electrode and a weak Brønsted acid. © 2019 American Chemical Society.