Search Results

Now showing 1 - 2 of 2
  • Item
    Cytocompatible, Injectable, and Electroconductive Soft Adhesives with Hybrid Covalent/Noncovalent Dynamic Network
    (Weinheim : Wiley-VCH, 2019) Xu, Yong; Patsis, Panagiotis A.; Hauser, Sandra; Voigt, Dagmar; Rothe, Rebecca; Günther, Markus; Cui, Meiying; Yang, Xuegeng; Wieduwild, Robert; Eckert, Kerstin; Neinhuis, Christoph; Akbar, Teuku Fawzul; Minev, Ivan R.; Pietzsch, Jens; Zhang, Yixin
    Synthetic conductive biopolymers have gained increasing interest in tissue engineering, as they can provide a chemically defined electroconductive and biomimetic microenvironment for cells. In addition to low cytotoxicity and high biocompatibility, injectability and adhesiveness are important for many biomedical applications but have proven to be very challenging. Recent results show that fascinating material properties can be realized with a bioinspired hybrid network, especially through the synergy between irreversible covalent crosslinking and reversible noncovalent self-assembly. Herein, a polysaccharide-based conductive hydrogel crosslinked through noncovalent and reversible covalent reactions is reported. The hybrid material exhibits rheological properties associated with dynamic networks such as self-healing and stress relaxation. Moreover, through fine-tuning the network dynamics by varying covalent/noncovalent crosslinking content and incorporating electroconductive polymers, the resulting materials exhibit electroconductivity and reliable adhesive strength, at a similar range to that of clinically used fibrin glue. The conductive soft adhesives exhibit high cytocompatibility in 2D/3D cell cultures and can promote myogenic differentiation of myoblast cells. The heparin-containing electroconductive adhesive shows high biocompatibility in immunocompetent mice, both for topical application and as injectable materials. The materials could have utilities in many biomedical applications, especially in the area of cardiovascular diseases and wound dressing.
  • Item
    Wet-Spun PEDOT/CNT Composite Hollow Fibers as Flexible Electrodes for H2O2 Production
    (Weinheim : Wiley-VCH, 2021) Cui, Qing; Bell, Daniel Josef; Wang, Siqi; Mohseni, Mojtaba; Felder, Daniel; Lölsberg, Jonas; Wessling, Matthias
    The electrochemical synthesis of hydrogen peroxide (H2O2) using the oxygen reduction reaction (ORR) requires highly catalytic active, selective, and stable electrode materials to realize a green and efficient process. The present publication shows for the first time the application of a facile one-step bottom-up wet-spinning approach for the continuous fabrication of stable and flexible tubular poly(3,4-ethylene dioxythiophene) (PEDOT : PSS) and PEDOT : PSS/carbon nanotube (CNT) hollow fibers. Additionally, electrochemical experiments reveal the catalytic activity of acid-treated PEDOT : PSS and its composites in the ORR forming hydrogen peroxide for the first time. Under optimized conditions, the composite electrodes with 40 wt % CNT loading could achieve a high production rate of 0.01 mg/min/cm2 and a current efficiency of up to 54 %. In addition to the high production rate, the composite hollow fiber has proven its long-term stability with 95 % current retention after 20 h of hydrogen peroxide production. © 2021 The Authors. ChemElectroChem published by Wiley-VCH GmbH