Search Results

Now showing 1 - 5 of 5
  • Item
    Ambient Hydrogenation and Deuteration of Alkenes Using a Nanostructured Ni-Core-Shell Catalyst
    (Weinheim : Wiley-VCH, 2021) Gao, Jie; Ma, Rui; Feng, Lu; Liu, Yuefeng; Jackstell, Ralf; Jagadeesh, Rajenahally V.; Beller, Matthias
    A general protocol for the selective hydrogenation and deuteration of a variety of alkenes is presented. Key to success for these reactions is the use of a specific nickel-graphitic shell-based core–shell-structured catalyst, which is conveniently prepared by impregnation and subsequent calcination of nickel nitrate on carbon at 450 °C under argon. Applying this nanostructured catalyst, both terminal and internal alkenes, which are of industrial and commercial importance, were selectively hydrogenated and deuterated at ambient conditions (room temperature, using 1 bar hydrogen or 1 bar deuterium), giving access to the corresponding alkanes and deuterium-labeled alkanes in good to excellent yields. The synthetic utility and practicability of this Ni-based hydrogenation protocol is demonstrated by gram-scale reactions as well as efficient catalyst recycling experiments. © 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
  • Item
    Ligand-Controlled Palladium-Catalyzed Carbonylation of Alkynols : Highly Selective Synthesis of α-Methylene-β-Lactones
    (Weinheim : Wiley-VCH, 2020) Ge, Yao; Ye, Fei; Liu, Jiawang; Yang, Ji; Spannenberg, Anke; Jiao, Haijun; Jackstell, Ralf; Beller, Matthias
    The first general and regioselective Pd-catalyzed cyclocarbonylation to give α-methylene-β-lactones is reported. Key to the success for this process is the use of a specific sterically demanding phosphine ligand based on N-arylated imidazole (L11) in the presence of Pd(MeCN)2Cl2 as pre-catalyst. A variety of easily available alkynols provide under additive-free conditions the corresponding α-methylene-β-lactones in moderate to good yields with excellent regio- and diastereoselectivity. The applicability of this novel methodology is showcased by the direct carbonylation of biologically active molecules including natural products. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Towards New Robust Zn(II) Complexes for the Ring-Opening Polymerization of Lactide Under Industrially Relevant Conditions
    (Weinheim : Wiley-VCH, 2019) Schäfer, Pascal M.; Dankhoff, Katja; Rothemund, Matthias; Ksiazkiewicz, Agnieszka N.; Pich, Andrij; Schobert, Rainer; Weber, Birgit; Herres-Pawlis, Sonja
    The synthesis of bio-based and biodegradable plastics is a hot topic in research due to growing environmental problems caused by omnipresent plastics. As a result, polylactide, which has been known for years, has seen a tremendous increase in industrial production. Nevertheless, the manufacturing process using the toxic catalyst Sn(Oct)2 is very critical. As an alternative, five zinc acetate complexes have been synthesized with Schiff base-like ligands that exhibit high activity in the ring-opening polymerization of non-purified lactide. The systems bear different side arms in the ligand scaffold. The influence of these substituents has been analyzed. For a detailed description of the catalytic activities, the rate constants kapp and kp were determined using in-situ Raman spectroscopy at a temperature of 150 °C. The polymers produced have molar masses of up to 71 000 g mol−1 and are therefore suitable for a variety of applications. Toxicity measurements carried out for these complexes proved the nontoxicity of the systems. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Synthesis of 3,4-Dihydro-2H-Pyrroles from Ketones, Aldehydes, and Nitro Alkanes via Hydrogenative Cyclization
    (Weinheim : Wiley-VCH, 2022) Klausfelder, Barbara; Blach, Patricia; de Jonge, Niels; Kempe, Rhett
    Syntheses of N-heterocyclic compounds that permit a flexible introduction of various substitution patterns by using inexpensive and diversely available starting materials are highly desirable. Easy to handle and reusable catalysts based on earth-abundant metals are especially attractive for these syntheses. We report here on the synthesis of 3,4-dihydro-2H-pyrroles via the hydrogenation and cyclization of nitro ketones. The latter are easily accessible from three components: a ketone, an aldehyde and a nitroalkane. Our reaction has a broad scope and 23 of the 33 products synthesized are compounds which have not yet been reported. The key to the general hydrogenation/cyclization reaction is a highly active, selective and reusable nickel catalyst, which was identified from a library of 24 earth-abundant metal catalysts.
  • Item
    Layered Nano‐Mosaic of Niobium Disulfide Heterostructures by Direct Sulfidation of Niobium Carbide MXenes for Hydrogen Evolution
    (Weinheim : Wiley-VCH, 2022) Husmann, Samantha; Torkamanzadeh, Mohammad; Liang, Kun; Majed, Ahmad; Dun, Chaochao; Urban, Jeffrey J.; Naguib, Michael; Presser, Volker
    MXene-transition metal dichalcogenide (TMD) heterostructures are synthesized through a one-step heat treatment of Nb2C and Nb4C3. These MXenes are used without delamination or any pre-treatment. Heat treatments accomplish the sacrificial transformation of these MXenes into TMD (NbS2) at 700 and 900 °C under H2S. This work investigates, for the first time, the role of starting MXene phase in the derivative morphology. It is shown that while treatment of Nb2C at 700 °C leads to the formation of pillar-like structures on the parent MXene, Nb4C3 produces nano-mosaic layered NbS2. At 900 °C, both MXene phases, of the same transition metal, fully convert into nano-mosaic layered NbS2 preserving the parent MXene's layered morphology. When tested as electrodes for hydrogen evolution reaction, Nb4C3-derived hybrids show better performance than Nb2C derivatives. The Nb4C3-derived heterostructure exhibits a low overpotential of 198 mV at 10 mA cm−2 and a Tafel slope of 122 mV dec−1, with good cycling stability in an acidic electrolyte.