Search Results

Now showing 1 - 2 of 2
  • Item
    Advanced GeSn/SiGeSn Group IV Heterostructure Lasers
    (Weinheim : Wiley-VCH, 2018) von den Driesch, Nils; Stange, Daniela; Rainko, Denis; Povstugar, Ivan; Zaumseil, Peter; Capellini, Giovanni; Schröder, Thomas; Denneulin, Thibaud; Ikonic, Zoran; Hartmann, Jean-Michel; Sigg, Hans; Mantl, Siegfried; Grützmacher, Detlev; Buca, Dan
    Growth and characterization of advanced group IV semiconductor materials with CMOS-compatible applications are demonstrated, both in photonics. The investigated GeSn/SiGeSn heterostructures combine direct bandgap GeSn active layers with indirect gap ternary SiGeSn claddings, a design proven its worth already decades ago in the III–V material system. Different types of double heterostructures and multi-quantum wells (MQWs) are epitaxially grown with varying well thicknesses and barriers. The retaining high material quality of those complex structures is probed by advanced characterization methods, such as atom probe tomography and dark-field electron holography to extract composition parameters and strain, used further for band structure calculations. Special emphasis is put on the impact of carrier confinement and quantization effects, evaluated by photoluminescence and validated by theoretical calculations. As shown, particularly MQW heterostructures promise the highest potential for efficient next generation complementary metal-oxide-semiconductor (CMOS)-compatible group IV lasers.
  • Item
    Comparison of Ultraviolet B Light‐Emitting Diodes with Single or Triple Quantum Wells
    (Weinheim : Wiley-VCH, 2021) Kolbe, Tim; Knauer, Arne; Ruschel, Jan; Rass, Jens; Kyong Cho, Hyun; Hagedorn, Sylvia; Glaab, Johannes; Lobo Ploch, Neysha; Einfeldt, Sven; Weyers, Markus
    Light-emitting diodes (LEDs) with an emission wavelength of 310 nm containing either a single or a triple quantum well are compared regarding their efficiency and long-term stability. In addition, the influence of the thickness of the lower quantum well barrier and the quantum well thickness in single quantum well (SQW) LEDs is investigated. Electroluminescence measurements show a 28% higher initial output power for the SQW LEDs compared with the triple quantum well (TQW) LEDs because of larger spatial overlap of the carriers in the SQW as revealed by electro-optical simulations of the LED heterostructures. However, TQW LEDs show a higher output power than SQW LEDs after 1 h operation under harsh conditions. For SQW LEDs, it is found that for a thicker lower quantum well barrier (65 nm instead of 25 nm) the initial output power decreases by ≈15%. A thicker SQW (3 nm instead of 1.6 nm) reduces the initial output power by even 45% but increases the lifetime by a factor of 6 which is attributed to reduced Auger recombination from an enhanced spatial separation of electrons and holes in the quantum wells due to the quantum-confined Stark effect.