Search Results

Now showing 1 - 6 of 6
  • Item
    A General Regioselective Synthesis of Alcohols by Cobalt-Catalyzed Hydrogenation of Epoxides
    (Weinheim : Wiley-VCH, 2020) Liu, Weiping; Leischner, Thomas; Li, Wu; Junge, Kathrin; Beller, Matthias
    A straightforward methodology for the synthesis of anti-Markovnikov-type alcohols is presented. By using a specific cobalt triphos complex in the presence of Zn(OTf)2 as an additive, the hydrogenation of epoxides proceeds with high yields and selectivities. The described protocol shows a broad substrate scope, including multi-substituted internal and terminal epoxides, as well as a good functional-group tolerance. Various natural-product derivatives, including steroids, terpenoids, and sesquiterpenoids, gave access to the corresponding alcohols in moderate-to-excellent yields. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    A Stable Manganese Pincer Catalyst for the Selective Dehydrogenation of Methanol
    (Weinheim : Wiley-VCH, 2016-12-2) Andérez-Fernández, María; Vogt, Lydia K.; Fischer, Steffen; Zhou, Wei; Jiao, Haijun; Garbe, Marcel; Elangovan, Saravanakumar; Junge, Kathrin; Junge, Henrik; Ludwig, Ralf; Beller, Matthias
    For the first time, structurally defined manganese pincer complexes catalyze the dehydrogenation of aqueous methanol to hydrogen and carbon dioxide, which is a transformation of interest with regard to the implementation of a hydrogen and methanol economy. Excellent long-term stability was demonstrated for the Mn-PNPiPr catalyst, as a turnover of more than 20 000 was reached. In addition to methanol, other important hydrogen carriers were also successfully dehydrogenated.
  • Item
    Non-Pincer-Type Manganese Complexes as Efficient Catalysts for the Hydrogenation of Esters
    (Weinheim : Wiley-VCH, 2017-4-21) van Putten, Robbert; Uslamin, Evgeny A.; Garbe, Marcel; Liu, Chong; Gonzalez-de-Castro, Angela; Lutz, Martin; Junge, Kathrin; Hensen, Emiel J. M.; Beller, Matthias; Lefort, Laurent; Pidko, Evgeny A.
    Catalytic hydrogenation of carboxylic acid esters is essential for the green production of pharmaceuticals, fragrances, and fine chemicals. Herein, we report the efficient hydrogenation of esters with manganese catalysts based on simple bidentate aminophosphine ligands. Monoligated Mn PN complexes are particularly active for the conversion of esters into the corresponding alcohols at Mn concentrations as low as 0.2 mol % in the presence of sub-stoichiometric amounts of KOtBu base.
  • Item
    Zirconium-Catalyzed Atom-Economical Synthesis of 1,1-Diborylalkanes from Terminal and Internal Alkenes
    (Weinheim : Wiley-VCH, 2020) Wang, Xianjin; Cui, Xin; Li, Sida; Wang, Yue; Xia, Chungu; Jiao, Haijun; Wu, Lipeng
    A general and atom-economical synthesis of 1,1-diborylalkanes from alkenes and a borane without the need for an additional H2 acceptor is reported for the first time. The key to our success is the use of an earth-abundant zirconium-based catalyst, which allows a balance of self-contradictory reactivities (dehydrogenative boration and hydroboration) to be achieved. Our method avoids using an excess amount of another alkene as an H2 acceptor, which was required in other reported systems. Furthermore, substrates such as simple long-chain aliphatic alkenes that did not react before also underwent 1,1-diboration in our system. Significantly, the unprecedented 1,1-diboration of internal alkenes enabled the preparation of 1,1-diborylalkanes. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Palladium-Catalyzed Cascade Carbonylation to α,β-Unsaturated Piperidones via Selective Cleavage of Carbon-Carbon Triple Bonds
    (Weinheim : Wiley-VCH, 2021) Ge, Yao; Ye, Fei; Yang, Ji; Spannenberg, Anke; Jiao, Haijun; Jackstell, Ralf; Beller, Matthias
    A direct and selective synthesis of α,β-unsaturated piperidones by a new palladium-catalyzed cascade carbonylation is described. In the presented protocol, easily available propargylic alcohols react with aliphatic amines to provide a broad variety of interesting heterocycles. Key to the success of this transformation is a remarkable catalytic cleavage of the present carbon–carbon triple bond by using a specific catalyst with 2-diphenylphosphinopyridine as ligand and appropriate reaction conditions. Mechanistic studies and control experiments revealed branched unsaturated acid 11 as crucial intermediate. © 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
  • Item
    Catalytic, Kinetic, and Mechanistic Insights into the Fixation of CO2 with Epoxides Catalyzed by Phenol-Functionalized Phosphonium Salts
    (Weinheim : Wiley-VCH, 2021) Hu, Yuya; Wei, Zhihong; Frey, Anna; Kubis, Christoph; Ren, Chang-Yue; Spannenberg, Anke; Jiao, Haijun; Werner, Thomas
    A series of hydroxy-functionalized phosphonium salts were studied as bifunctional catalysts for the conversion of CO2 with epoxides under mild and solvent-free conditions. The reaction in the presence of a phenol-based phosphonium iodide proceeded via a first order rection kinetic with respect to the substrate. Notably, in contrast to the aliphatic analogue, the phenol-based catalyst showed no product inhibition. The temperature dependence of the reaction rate was investigated, and the activation energy for the model reaction was determined from an Arrhenius-plot (Ea =39.6 kJ mol-1 ). The substrate scope was also evaluated. Under the optimized reaction conditions, 20 terminal epoxides were converted at room temperature to the corresponding cyclic carbonates, which were isolated in yields up to 99 %. The reaction is easily scalable and was performed on a scale up to 50 g substrate. Moreover, this method was applied in the synthesis of the antitussive agent dropropizine starting from epichlorohydrin and phenylpiperazine. Furthermore, DFT calculations were performed to rationalize the mechanism and the high efficiency of the phenol-based phosphonium iodide catalyst. The calculation confirmed the activation of the epoxide via hydrogen bonding for the iodide salt, which facilitates the ring-opening step. Notably, the effective Gibbs energy barrier regarding this step is 97 kJ mol-1 for the bromide and 72 kJ mol-1 for the iodide salt, which explains the difference in activity.