Search Results

Now showing 1 - 2 of 2
  • Item
    Gold-Induced Fibril Growth: The Mechanism of Surface-Facilitated Amyloid Aggregation
    (Weinheim : Wiley-VCH, 2016) Gladytz, Anika; Abel, Bernd; Risselada, Herre Jelger
    The question of how amyloid fibril formation is influenced by surfaces is crucial for a detailed understanding of the process in vivo. We applied a combination of kinetic experiments and molecular dynamics simulations to elucidate how (model) surfaces influence fibril formation of the amyloid-forming sequences of prion protein SUP35 and human islet amyloid polypeptide. The kinetic data suggest that structural reorganization of the initial peptide corona around colloidal gold nanoparticles is the rate-limiting step. The molecular dynamics simulations reveal that partial physisorption to the surface results in the formation of aligned monolayers, which stimulate the formation of parallel, critical oligomers. The general mechanism implies that the competition between the underlying peptide–peptide and peptide–surface interactions must strike a balance to accelerate fibril formation.
  • Item
    Ultrathin 2D Titanium Carbide MXene (Ti3C2Tx) Nanoflakes Activate WNT/HIF-1α-Mediated Metabolism Reprogramming for Periodontal Regeneration
    (Weinheim : Wiley-VCH, 2021) Cui, Di; Kong, Na; Ding, Liang; Guo, Yachong; Yang, Wenrong; Yan, Fuhua
    Periodontal defect regeneration in severe periodontitis relies on the differentiation and proliferation of periodontal ligament cells (PDLCs). Recently, an emerging 2D nanomaterial, MXene (Ti3C2Tx), has gained more and more attention due to the extensive antibacterial and anticancer activity, while its potential biomedical application on tissue regeneration remains unclear. Through a combination of experimental and multiscale simulation schemes, Ti3C2Tx has exhibited satisfactory biocompatibility and induced distinguish osteogenic differentiation of human PDLCs (hPDLCs), with upregulated osteogenesis-related genes. Ti3C2Tx manages to activate the Wnt/β-catenin signaling pathway by enhancing the Wnt-Frizzled complex binding, thus stabilizing HIF-1α and altering metabolic reprogramming into glycolysis. In vivo, hPDLCs pretreated by Ti3C2Tx display excellent performance in new bone formation and osteoclast inhibition with enhanced RUNX2, HIF-1α, and β-catenin in an experimental rat model of periodontal fenestration defects, indicating that this material has high efficiency of periodontal regeneration promotion. It is demonstrated in this work that Ti3C2Tx has highly efficient therapeutic effects in osteogenic differentiation and periodontal defect repairment. © 2021 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH