Search Results

Now showing 1 - 2 of 2
  • Item
    Tailoring the Cavity of Hollow Polyelectrolyte Microgels
    (Weinheim : Wiley-VCH, 2020) Wypysek, Sarah K.; Scotti, Andrea; Alziyadi, Mohammed O.; Potemkin, Igor I.; Denton, Alan R.; Richtering, Walter
    The authors demonstrate how the size and structure of the cavity of hollow charged microgels may be controlled by varying pH and ionic strength. Hollow charged microgels based on N-isopropylacrylamide with ionizable co-monomers (itaconic acid) combine advanced structure with enhanced responsiveness to external stimuli. Structural advantages accrue from the increased surface area provided by the extra internal surface. Extreme sensitivity to pH and ionic strength due to ionizable moieties in the polymer network differentiates these soft colloidal particles from their uncharged counterparts, which sustain a hollow structure only at cross-link densities sufficiently high that stimuli sensitivity is reduced. Using small-angle neutron and light scattering, increased swelling of the network in the charged state accompanied by an expanded internal cavity is observed. Upon addition of salt, the external fuzziness of the microgel surface diminishes while the internal fuzziness grows. These structural changes are interpreted via Poisson–Boltzmann theory in the cell model. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
  • Item
    Quantum Transport in Nanostructures of 3D Topological Insulators
    (Weinheim : Wiley-VCH, 2020) Giraud, Romain; Dufouleur, Joseph
    Quantum transport measurement is an efficient tool to unveil properties of topological surface states in 3D topological insulators. Herein, experimental and theoretical results are reviewed, presenting first some methods for the growth of nanostructures. The effect of the disorder and the band bending is discussed in details both experimentally and theoretically. Then, the focus is put on disorder and quantum confinement effect in topological surface states of 3D topological insulators narrow nanostructures. Such effect can be revealed by investigating quantum interferences at very low temperature such as Aharonov–Bohm oscillations or universal conductance fluctuations. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim