Search Results

Now showing 1 - 2 of 2
  • Item
    REScO3 Substrates—Purveyors of Strain Engineering
    (Weinheim : Wiley-VCH, 2019) Klimm, Detlef; Guguschev, Christo; Ganschow, Steffen; Bickermann, Matthias; Schlom, Darrell G.
    The thermodynamic and crystallographic background for the development of substrate crystals that are suitable for the epitaxial deposition of biaxially strained functional perovskite layers is reviewed. In such strained layers the elastic energy delivers an additional contribution to the Gibbs free energy, which allows the tuning of physical properties and phase transition temperatures to desired values. For some oxide systems metastable phases can even be accessed. Rare-earth scandates, REScO3, are well suited as substrate crystals because they combine mechanical and chemical stability in the epitaxy process with an adjustable range of pseudo-cubic lattice parameters in the 3.95 to 4.02 Å range. To further tune the lattice parameters, chemical substitution for the RE or Sc is possible. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Analysis of Mechanical Strain in AlGaN/GaN HFETs
    (Weinheim : Wiley-VCH, 2023) Yazdani, Hossein; Graff, Andreas; Simon-Najasek, Michél; Altmann, Frank; Brunner, Frank; Ostermay, Ina; Chevtchenko, Serguei; Würfl, Joachim
    Herein, the influence of mechanical strain induced by passivation layers on the electrical performance of AlGaN/GaN heterostructure field-effect transistor is investigated. We studied the physical mechanism of a threshold voltage (Vth) shift for the monolithically fabricated on/off devices reported earlier by our group. For that, theoretical calculations, simulation-based analysis, and nano-beam electron diffraction (NBED) measurements based on STEM are used. Strain distribution in the gate vicinity of transistors is compared for a SiNx passivation layer with intrinsic stress from ≈0.5 to −1 GPa for normally on and normally off devices, respectively. The strain in epitaxial layers transferred by intrinsic stress of SiNx is quantitatively evaluated using NEBD method. Strain dissimilarity Δε = 0.23% is detected between normally on and normally off devices. Using this method, quantitative correlation between 1.13 V of Vth shift and microscopic strain difference in the epitaxial layers caused by 1.5 GPa intrinsic stress variation in passivation layer is provided. It is showed in this correlation that about half of the reported threshold voltage shift is induced by strain, i.e., by the piezoelectric effect. The rest of Vth shift is caused by the fabrication process. Therefore, various components/mechanisms contributing to the measured Vth shift are distinguished.