Search Results

Now showing 1 - 5 of 5
  • Item
    Predictability of twentieth century sea-level rise from past data
    (Bristol : IOP Publishing, 2013) Bittermann, Klaus; Rahmstorf, Stefan; Perrette, Mahé; Vermeer, Martin
    The prediction of global sea-level rise is one of the major challenges of climate science. While process-based models are still being improved to capture the complexity of the processes involved, semi-empirical models, exploiting the observed connection between global-mean sea level and global temperature and calibrated with data, have been developed as a complementary approach. Here we investigate whether twentieth century sea-level rise could have been predicted with such models given a knowledge of twentieth century global temperature increase. We find that either proxy or early tide gauge data do not hold enough information to constrain the model parameters well. However, in combination, the use of proxy and tide gauge sea-level data up to 1900 AD allows a good prediction of twentieth century sea-level rise, despite this rise being well outside the rates experienced in previous centuries during the calibration period of the model. The 90% confidence range for the linear twentieth century rise predicted by the semi-empirical model is 13–30 cm, whereas the observed interval (using two tide gauge data sets) is 14–26 cm.
  • Item
    Decomposing the effects of ocean warming on chlorophyll a concentrations into physically and biologically driven contributions
    (Bristol : IOP Publishing, 2013) Olonscheck, D.; Hofmann, M.; Worm, B.; Schellnhuber, H.J.
    Recently compiled observational data suggest a substantial decline in the global median chlorophyll a concentration over the 20th century, a trend that appears to be linked to ocean warming. Several modelling studies have considered changes in the ocean's physical structure as a possible cause, while experimental work supports a biological mechanism, namely an observed increase in zooplankton grazing rate that outpaces phytoplankton production at higher temperatures. Here, we present transient simulations derived from a coupled ocean general circulation and carbon cycle model forced by atmospheric fields under unabated anthropogenic global warming (IPCC SRES A1FI scenario). The simulations account for both physical and biological mechanisms, and can reproduce about one quarter of the observed chlorophyll a decline during the 20th century, when using realistically parameterized temperature sensitivity of zooplankton metabolism (Q10 between 2 and 4) and phytoplankton growth (Q10 ~ 1.9). Therefore, we have employed and re-calibrated the standard ecosystem model which assumes a lower temperature sensitivity of zooplankton grazing (Q10 = 1.1049) by re-scaling phytoplankton growth rates and zooplankton grazing rates. Our model projects a global chlorophyll a decline of >50% by the end of the 21st century. While phytoplankton abundance and chlorophyll a experience pronounced negative effects, primary production and zooplankton concentrations are less sensitive to ocean warming. Although changes in physical structure play an important role, much of the simulated change in chlorophyll a and productivity is related to the uneven temperature sensitivity of the marine ecosystem.
  • Item
    A novel probabilistic risk analysis to determine the vulnerability of ecosystems to extreme climatic events
    (Bristol : IOP Publishing, 2013) van Oijen, Marcel; Beer, Christian; Cramer, Wolfgang; Rammig, Anja; Reichstein, Markus; Rolinski, Susanne; Soussana, Jean-Francois
    We present a simple method of probabilistic risk analysis for ecosystems. The only requirements are time series—modelled or measured—of environment and ecosystem variables. Risk is defined as the product of hazard probability and ecosystem vulnerability. Vulnerability is the expected difference in ecosystem performance between years with and without hazardous conditions. We show an application to drought risk for net primary productivity of coniferous forests across Europe, for both recent and future climatic conditions.
  • Item
    Contribution of permafrost soils to the global carbon budget
    (Bristol : IOP Publishing, 2013) Schaphoff, Sibyll; Heyder, Ursula; Ostberg, Sebastian; Gerten, Dieter; Heinke, Jens; Lucht, Wolfgang
    Climate warming affects permafrost soil carbon pools in two opposing ways: enhanced vegetation growth leads to higher carbon inputs to the soil, whereas permafrost melting accelerates decomposition and hence carbon release. Here, we study the spatial and temporal dynamics of these two processes under scenarios of climate change and evaluate their influence on the carbon balance of the permafrost zone. We use the dynamic global vegetation model LPJmL, which simulates plant physiological and ecological processes and includes a newly developed discrete layer energy balance permafrost module and a vertical carbon distribution within the soil layer. The model is able to reproduce the interactions between vegetation and soil carbon dynamics as well as to simulate dynamic permafrost changes resulting from changes in the climate. We find that vegetation responds more rapidly to warming of the permafrost zone than soil carbon pools due to long time lags in permafrost thawing, and that the initial simulated net uptake of carbon may continue for some decades of warming. However, once the turning point is reached, if carbon release exceeds uptake, carbon is lost irreversibly from the system and cannot be compensated for by increasing vegetation carbon input. Our analysis highlights the importance of including dynamic vegetation and long-term responses into analyses of permafrost zone carbon budgets.
  • Item
    Spatial decoupling of agricultural production and consumption: Quantifying dependences of countries on food imports due to domestic land and water constraints
    (Bristol : IOP Publishing, 2013) Fader, Marianela; Gerten, Dieter; Krause, Michael; Lucht, Wolfgang; Cramer, Wolfgang
    In our globalizing world, the geographical locations of food production and consumption are becoming increasingly disconnected, which increases reliance on external resources and their trade. We quantified to what extent water and land constraints limit countries' capacities, at present and by 2050, to produce on their own territory the crop products that they currently import from other countries. Scenarios of increased crop productivity and water use, cropland expansion (excluding areas prioritized for other uses) and population change are accounted for. We found that currently 16% of the world population use the opportunities of international trade to cover their demand for agricultural products. Population change may strongly increase the number of people depending on ex situ land and water resources up to about 5.2 billion (51% of world population) in the SRES A2r scenario. International trade will thus have to intensify if population growth is not accompanied by dietary change towards less resource-intensive products, by cropland expansion, or by productivity improvements, mainly in Africa and the Middle East. Up to 1.3 billion people may be at risk of food insecurity in 2050 in present low-income economies (mainly in Africa), if their economic development does not allow them to afford productivity increases, cropland expansion and/or imports from other countries.