Search Results

Now showing 1 - 2 of 2
  • Item
    Magnetization-driven Lifshitz transition and charge-spin coupling in the kagome metal YMn6Sn6
    (London : Springer Nature, 2022) Siegfried, Peter E.; Bhandari, Hari; Jones, David C.; Ghimire, Madhav P.; Dally, Rebecca L.; Poudel, Lekh; Bleuel, Markus; Lynn, Jeffrey W.; Mazin, Igor I.; Ghimire, Nirmal J.
    The Fermi surface (FS) is essential for understanding the properties of metals. It can change under both conventional symmetry-breaking phase transitions and Lifshitz transitions (LTs), where the FS, but not the crystal symmetry, changes abruptly. Magnetic phase transitions involving uniformly rotating spin textures are conventional in nature, requiring strong spin-orbit coupling (SOC) to influence the FS topology and generate measurable properties. LTs driven by a continuously varying magnetization are rarely discussed. Here we present two such manifestations in the magnetotransport of the kagome magnet YMn6Sn6: one caused by changes in the magnetic structure and another by a magnetization-driven LT. The former yields a 10% magnetoresistance enhancement without a strong SOC, while the latter a 45% reduction in the resistivity. These phenomena offer a unique view into the interplay of magnetism and electronic topology, and for understanding the rare-earth counterparts, such as TbMn6Sn6, recently shown to harbor correlated topological physics.
  • Item
    Chemical insights into the base-tuned hydrothermal treatment of side stream biomasses
    (Cambridge : Royal Society of Chemistry, 2022) Tkachenko, Vitalii; Marzban, Nader; Vogl, Sarah; Filonenko, Svitlana; Antonietti, Markus
    Herein, we analyzed the hydrothermal processes applied to four very different side stream biomasses (chestnut foliage, sugar beet pressing chips, pine bark and branches from park cleaning, bamboo cuts) and identified diverse soluble products depending on the starting pH of the reaction, covering mild to strong basic pH conditions. Despite the biological diversity of the starting products, hydrothermal disintegration of biomass results in a remarkable reduction of chemical diversity towards a controllable number of molecular products, and the well-resolved and rather simple NMR-spectra allow the assignment of the products to only a few families of compounds. It has been revealed that in comparison with the classical hydrothermal treatment, where mostly hydrochar is produced, molar excess of base shifts the hydrothermal treatment towards a humification process. A further increase of the base content causes destruction of the biomass into the more oxygenated homogeneous colloid and thus, for the first time, it can be assigned to the hydrothermal fulvication process. We discuss diverse valorization schemes depending on the biomass and conditions applied.