Search Results

Now showing 1 - 2 of 2
  • Item
    Thiol-Methylsulfone Based Hydrogels: Enhanced Control on Gelation Kinetics for 3D Cell Encapsulation
    (Washington, DC : American Chemical Society, 2019) Farrukh, Aleeza; Włodarczyk-Biegun, Malgorzata K.; del Campo, Aránzazu
    Hydrogels are useful temporal matrices for cell culture technologies. The successful mixing and encapsulation of cells within the gel requires the selection of efficient and cytocompatible gelation reactions occurring in the minute timescale under physiological conditions. The thiol-methylsulfonyl (MS) chemical reaction is introduced here as a novel chemistry to encapsulate cells in polymeric matrices. Thiol-MS crosslinking does not require a light activation step and can occur within the seconds-to-minutes timescale by adjusting the pH in the physiological range 8.0-6.6. This reaction is cytocompatible and the reaction product is hydrolytically stable in cell culture media up to 4 weeks. Cell encapsulation protocols enabling comfortable handling and yielding homogenous distribution of the embedded cells are described. All these features are relevant for the application of this crosslinking reaction to biomedical scenarios. Finally, this manuscript also compares the performance of thiol-MS hydrogels with the established thiol-maleimide and thiol-vinylsulfone hydrogels. The benefit of thiol-MS crosslinking in terms of control over hydrogelation kinetics is demonstrated.
  • Item
    Redox-triggerable Luciferin-Bioinspired Hydrogels as Injectable and Cell-encapsulating Matrices
    (Washington, D.C. : American Chemical Society, 2022) Jin, Minye; Gläser, Alisa; Paez, Julieta I.
    Over the past few decades there has been a great interest in developing smart hydrogels that are stimuli-responsive, due to their ability to respond to variations caused by external stimuli. These materials are exploited for biomedical applications such as biosensors, injectable scaffolds, drug delivery and tissue engineering. Recently, our group reported firefly-inspired hydrogel matrices for 3D cell culture. This platform exhibited certain advantages like rapid gelation rate and tunability of mechanical and biological properties. However, this firstly reported system did not allow for fine control of the gelation onset because the crosslinking reaction started as soon as the two precursors were mixed. Moreover, one of its precursors demonstrated poor storage stability in aqueous solution. These limitations restrict its application as injectable matrices. In this article, we endow the luciferin-inspired hydrogels with redox-triggering capability, to overcome the limitations of the previous system and to widen its application range. We achieve this goal by introducing protected macromers as hydrogel polymeric precursors that can be activated in the presence of a mild reductant, to trigger gel formation in situ with high degree of control. We demonstrate that the regulation of intrinsic (e.g., structure of protecting group, reductant type) and extrinsic (e.g., pH, temperature) parameters of the triggering reaction can be used to modulate key materials properties. This novel upgraded redox-triggerable system enables precise control over gelation onset and kinetics, thus facilitating its utilization as injectable hydrogel without negatively impacting its cytocompatibility. Our findings expand the current toolkit of chemically-based stimuli-responsive hydrogels.