Search Results

Now showing 1 - 2 of 2
  • Item
    Multimodel Evaluation of Nitrous Oxide Emissions From an Intensively Managed Grassland
    (Hoboken, NJ : Wiley, 2020) Fuchs, Kathrin; Merbold, Lutz; Buchmann, Nina; Bretscher, Daniel; Brilli, Lorenzo; Fitton, Nuala; Topp, Cairistiona F.E.; Klumpp, Katja; Lieffering, Mark; Martin, Raphaël; Newton, Paul C.D.; Rees, Robert M.; Rolinski, Susanne; Smith, Pete; Snow, Val
    Process-based models are useful for assessing the impact of changing management practices and climate on yields and greenhouse gas (GHG) emissions from agricultural systems such as grasslands. They can be used to construct national GHG inventories using a Tier 3 approach. However, accurate simulations of nitrous oxide (N2O) fluxes remain challenging. Models are limited by our understanding of soil-plant-microbe interactions and the impact of uncertainty in measured input parameters on simulated outputs. To improve model performance, thorough evaluations against in situ measurements are needed. Experimental data of N2O emissions under two management practices (control with typical fertilization versus increased clover and no fertilization) were acquired in a Swiss field experiment. We conducted a multimodel evaluation with three commonly used biogeochemical models (DayCent in two variants, PaSim, APSIM in two variants) comparing four years of data. DayCent was the most accurate model for simulating N2O fluxes on annual timescales, while APSIM was most accurate for daily N2O fluxes. The multimodel ensemble average reduced the error in estimated annual fluxes by 41% compared to an estimate using the Intergovernmental Panel on Climate Change (IPCC)-derived method for the Swiss agricultural GHG inventory (IPCC-Swiss), but individual models were not systematically more accurate than IPCC-Swiss. The model ensemble overestimated the N2O mitigation effect of the clover-based treatment (measured: 39–45%; ensemble: 52–57%) but was more accurate than IPCC-Swiss (IPCC-Swiss: 72–81%). These results suggest that multimodel ensembles are valuable for estimating the impact of climate and management on N2O emissions. ©2019. The Authors.
  • Item
    How model and input uncertainty impact maize yield simulations in West Africa
    (Bristol : IOP Publishing, 2015) Waha, Katharina; Huth, Neil; Carberry, Peter; Wang, Enli
    Crop models are common tools for simulating crop yields and crop production in studies on food security and global change. Various uncertainties however exist, not only in the model design and model parameters, but also and maybe even more important in soil, climate and management input data. We analyze the performance of the point-scale crop model APSIM and the global scale crop model LPJmL with different climate and soil conditions under different agricultural management in the low-input maize-growing areas of Burkina Faso, West Africa. We test the models' response to different levels of input information from little to detailed information on soil, climate (1961–2000) and agricultural management and compare the models' ability to represent the observed spatial (between locations) and temporal variability (between years) in crop yields. We found that the resolution of different soil, climate and management information influences the simulated crop yields in both models. However, the difference between models is larger than between input data and larger between simulations with different climate and management information than between simulations with different soil information. The observed spatial variability can be represented well from both models even with little information on soils and management but APSIM simulates a higher variation between single locations than LPJmL. The agreement of simulated and observed temporal variability is lower due to non-climatic factors e.g. investment in agricultural research and development between 1987 and 1991 in Burkina Faso which resulted in a doubling of maize yields. The findings of our study highlight the importance of scale and model choice and show that the most detailed input data does not necessarily improve model performance.