Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Dialogue on analytical and ab initio methods in attoscience

2021, Armstrong, Gregory S.J., Khokhlova, Margarita A., Labeye, Marie, Maxwell, Andrew S., Pisanty, Emilio, Ruberti, Marco

The perceived dichotomy between analytical and ab initio approaches to theory in attosecond science is often seen as a source of tension and misconceptions. This Topical Review compiles the discussions held during a round-table panel at the 'Quantum Battles in Attoscience' cecam virtual workshop, to explore the sources of tension and attempt to dispel them. We survey the main theoretical tools of attoscience-covering both analytical and numerical methods-and we examine common misconceptions, including the relationship between ab initio approaches and the broader numerical methods, as well as the role of numerical methods in 'analytical' techniques. We also evaluate the relative advantages and disadvantages of analytical as well as numerical and ab initio methods, together with their role in scientific discovery, told through the case studies of two representative attosecond processes: non-sequential double ionisation and resonant high-harmonic generation. We present the discussion in the form of a dialogue between two hypothetical theoreticians, a numericist and an analytician, who introduce and challenge the broader opinions expressed in the attoscience community.

Loading...
Thumbnail Image
Item

Conservation laws for electron vortices in strong-field ionisation

2021, Kang, Yuxin, Pisanty, Emilio, Ciappina, Marcelo, Lewenstein, Maciej, Morisson Faria, Carla Figueira de, Maxwell, Andrew S.

We investigate twisted electrons with a well-defined orbital angular momentum, which have been ionised via a strong laser field. By formulating a new variant of the well-known strong field approximation, we are able to derive conservation laws for the angular momenta of twisted electrons in the cases of linear and circularly polarised fields. In the case of linear fields, we demonstrate that the orbital angular momentum of the twisted electron is determined by the magnetic quantum number of the initial bound state. The condition for the circular field can be related to the famous ATI peaks, and provides a new interpretation for this fundamental feature of photoelectron spectra. We find the length of the circular pulse to be a vital factor in this selection rule and, employing an effective frequency, we show that the photoelectron OAM emission spectra are sensitive to the parity of the number of laser cycles. This work provides the basic theoretical framework with which to understand the OAM of a photoelectron undergoing strong field ionisation.