Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Dataset on permeability of wings from owls and non-silently flying birds

2024, Geyer, Thomas F., Windisch, Thomas, Fritzsche, Christoph, Sarradj, Ennes

The very soft and flow-permeable plumage is among the special adaptations of the owl that the silent flight is attributed to. Using a specially designed apparatus that provides a low-speed volume flow of air through a small sample of porous material, measurements of the air flow permeability were performed in accordance to ISO 9053 on a total of 39 prepared wing specimen from six different bird species, including three species of silently flying owls and three non-silently flying bird species. The resulting data set described in the present paper contains the static airflow resistance measured at different positions on the wing.

Loading...
Thumbnail Image
Item

Electrically Driven Microcavity Exciton-Polariton Optomechanics at 20 GHz

2021, Kuznetsov, Alexander S., Machado, Diego H.O., Biermann, Klaus, Santos, Paulo V.

Microcavity exciton polaritons enable the resonant coupling of excitons and photons to vibrations in the super-high-frequency (SHF, 3–30 GHz) domain. We introduce here a novel platform for coherent SHF optomechanics based on the coupling of polaritons and electrically driven SHF longitudinal acoustic phonons confined in a planar Bragg microcavity. The highly monochromatic phonons with tunable amplitudes are excited over a wide frequency range by piezoelectric transducers, which also act as efficient phonon detectors with a very large dynamical range. The microcavity platform exploits the long coherence time of polaritons as well as their efficient coupling to phonons. Furthermore, an intrinsic property of the platform is the backfeeding of phonons to the interaction region via reflections at the sample boundaries, which leads to quality factor × frequency products (Q×f) exceeding 1014  Hz as well as huge modulation amplitudes of the optical transition energies exceeding 8 meV. We show that the modulation is dominated by the phonon-induced energy shifts of the excitonic polariton component. Thus, the large modulation leads to a dynamical switching of light-matter nature of the particles from a mixed (i.e., polaritonic) one to photonlike and excitonlike states at frequencies up to 20 GHz. On the one hand, this work opens the way for electrically driven polariton optomechanics in the nonadiabatic, sideband-resolved regime of coherent control. Here, the bidirectionality of the transducers can be exploited for light-to-sound-to-rf conversion. On the other hand, the large phonon frequencies and Q×f products enable phonon control with optical readout down to the single-particle regime at relatively high temperatures (of 1 K).

Loading...
Thumbnail Image
Item

New electronic device for driving surface acoustic wave actuators

2009, BrĂ¼nig, R., Mensel, K., Kunze, R., Schmidt, H.

Surface acoustic wave (SAW) actuators are driven by a high frequency signal. The frequency range for an ideal SAW-generation is usually very narrow banded and may shift depending on various environmental conditions. We present a new electronic device which self-aligns to the optimal excitation frequency within a wide range. Any kind of SAW-actuator can be used. The device continuously scans a certain frequency range and characterizes the SAW-component. The ideal excitation frequency is then determined and used to drive the SAW-device. In case of changes like loading conditions or temperature variations the device automatically readjusts to the optimal frequency and prevents possible damage of the device or actuator in case of an error. © 2009.