Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Multiscale simulations of the electronic structure of III-nitride quantum wells with varied indium content: Connecting atomistic and continuum-based models

2021, Chaudhuri, D., O’Donovan, M., Streckenbach, T., Marquardt, O., Farrell, P., Patra, S.K., Koprucki, T., Schulz, S.

Carrier localization effects in III-N heterostructures are often studied in the frame of modified continuum-based models utilizing a single-band effective mass approximation. However, there exists no comparison between the results of a modified continuum model and atomistic calculations on the same underlying disordered energy landscape. We present a theoretical framework that establishes a connection between atomistic tight-binding theory and continuum-based electronic structure models, here a single-band effective mass approximation, and provide such a comparison for the electronic structure of (In,Ga)N quantum wells. In our approach, in principle, the effective masses are the only adjustable parameters since the confinement energy landscape is directly obtained from tight-binding theory. We find that the electronic structure calculated within effective mass approximation and the tight-binding model differ noticeably. However, at least in terms of energy eigenvalues, an improved agreement between the two methods can be achieved by adjusting the band offsets in the continuum model, enabling, therefore, a recipe for constructing a modified continuum model that gives a reasonable approximation of the tight-binding energies. Carrier localization characteristics for energetically low lying, strongly localized states differ, however, significantly from those obtained using the tight-binding model. For energetically higher lying, more delocalized states, good agreement may be achieved. Therefore, the atomistically motivated continuum-based single-band effective mass model established provides a good, computationally efficient alternative to fully atomistic investigations, at least at when targeting questions related to higher temperatures and carrier densities in (In,Ga)N systems.

Loading...
Thumbnail Image
Item

Momentum-resolved superconducting gap in the bulk of Ba1-xK xFe2As2 from combined ARPES and μSR measurements

2009, Evtushinsky, D.V., Inosov, D.S., Zabolotnyy, V.B., Viazovska, M.S., Khasanov, R., Amato, A., Klauss, H.-H., Luetkens, H., Niedermayer, Ch., Sun, G.L., Hinkov, V., Lin, C.T., Varykhalov, A., Koitzsch, A., Knupfer, M., Büchner, B., Kordyuk, A.A., Borisenko, S.V.

Here we present a calculation of the temperature-dependent London penetration depth, λ(T), in Ba1-xKxFe 2As2 (BKFA) on the basis of the electronic band structure (Zabolotnyy et al 2009 Nature 457 569, Zabolotnyy et al 2009 Physica C 469 448) and momentum-dependent superconducting gap (Evtushinsky et al 2009 Phys. Rev. B 79 054517) extracted from angleresolved photoemission spectroscopy (ARPES) data. The results are compared to the direct measurements of λ(T) by muon spin rotation (μSR) (Khasanov et al 2009 Phys. Rev. Lett. 102 187005). The value of λ(T = 0), calculated with no adjustable parameters, equals 270 nm, while the directly measured one is 320 nm; the temperature dependence λ(T) is also easily reproduced. Such agreement between the two completely different approaches allows us to conclude that ARPES studies of BKFA are bulk-representative. Our review of the available experimental studies of the superconducting gap in the new ironbased superconductors in general allows us to state that most of them bear two nearly isotropic gaps with coupling constants 2ΔkBTc = 2.5±1.5 and 7±2.