Search Results

Now showing 1 - 2 of 2
  • Item
    Aldehydes and ketones influence reactivity and selectivity in nickel-catalysed Suzuki-Miyaura reactions
    (Cambridge : RSC, 2020) Cooper, Alasdair K.; Leonard, David K.; Bajo, Sonia; Burton, Paul M.; Nelson, David J.
    The energetically-favorable coordination of aldehydes and ketones-but not esters or amides-to Ni0 during Suzuki-Miyaura reactions can lead either to exquisite selectivity and enhanced reactivity, or to inhibition of the reaction. Aryl halides where the C-X bond is connected to the same π-system as an aldehyde or ketone undergo unexpectedly rapid oxidative addition to [Ni(COD)(dppf)] (1), and are selectively cross-coupled during competition reactions. When aldehydes and ketones are present in the form of exogenous additives, the cross-coupling reaction is inhibited to an extent that depends on the strength of the coordination of the pendant carbonyl group to Ni0. This work advances our understanding of how common functional groups interact with Ni0 catalysts and how these interactions affect workhorse catalytic reactions in academia and industry. This journal is © The Royal Society of Chemistry.
  • Item
    Theoretical mechanistic investigation of zinc(ii) catalyzed oxidation of alcohols to aldehydes and esters
    (London : RSC Publishing, 2016) Nisa, Riffat Un; Mahmood, Tariq; Ludwig, Ralf; Ayub, Khurshid
    The mechanism of the Zn(II) catalyzed oxidation of benzylic alcohol to benzaldehyde and ester by H2O2 oxidant was investigated through density functional theory methods and compared with the similar oxidation mechanisms of other late transition metals. Both inner sphere and intermediate sphere mechanisms have been analyzed in the presence and absence of pyridine-2-carboxylic acid (ligand). An intermediate sphere mechanism involving the transfer of hydrogen from alcohol to H2O2 was found to be preferred over the competitive inner sphere mechanism involving β-hydride elimination. Kinetic barriers associated with the intermediate sphere mechanism are consistent with the experimental observations, suggesting that the intermediate sphere mechanism is a plausible mechanism under these reaction conditions. The oxidation of alcohols to aldehydes (first step) is kinetically more demanding than the oxidation of hemiacetals to esters (second step). Changing the oxidant to tert-butyl hydrogen peroxide (TBHP) increases the activation barrier for the oxidation of alcohol to aldehyde by 0.4 kcal mol−1, but decreases the activation barrier by 3.24 kcal mol−1 for oxidation of hemiacetal to ester. Replacement of zinc bromide with zinc iodide causes the second step to be more demanding than the first step. Pyridine-2-carboxylic acid ligand remarkably decreases the activation barriers for the intermediate sphere pathway, whereas a less pronounced inverse effect is estimated for the inner sphere mechanism.