Search Results

Now showing 1 - 10 of 12
Loading...
Thumbnail Image
Item

Germania and alumina dopant diffusion and viscous flow effects at preparation of doped optical fibers

2017, Kobelke, Jens, Schuster, Kay, Bierlich, Jörg, Unger, Sonja, Schwuchow, Anka, Elsmann, Tino, Dellith, Jan, Aichele, Claudia, Fatobene Ando, Ron, Bartelt, Hartmut

We report on germania and alumina dopant profile shift effects at preparation of compact optical fibers using packaging methods (Stack-and-Draw method, Rod-in-Tube (RiT) technique). The sintering of package hollow volume by viscous flow results in a shift of the core-pitch ratio in all-solid microstructured fibers. The ratio is increased by about 5% in the case of a hexagonal package. The shift by diffusion effects of both dopants is simulated for typical slow speed drawing parameters. Thermodynamic approximations of surface dissociation of germania doped silica suggest the need of an adequate undoped silica barrier layer to prevent an undesired bubble formation at fiber drawing. In contrast, alumina doping does not estimate critical dissociation effects with vaporous aluminium oxide components. We report guide values of diffusion length of germania and alumina for the drawing process by kinetic approximation. The germania diffusion involves a small core enlargement, typically in the sub-micrometer scale. Though, the alumina diffusion enlarges it by a few micrometers. A drawn pure alumina preform core rod transforms to an amorphous aluminosilicate core with a molar alumina concentration of only about 50% and a non-gaussian concentration profile.

Loading...
Thumbnail Image
Item

Ripple coarsening on ion beam-eroded surfaces

2014, Teichmann, M., Lorbeer, J., Frost, F., Rauschenbach, B.

Abstract: The temporal evolution of ripple pattern on Ge, Si, Al2O3, and SiO2 by low-energy ion beam erosion with Xe + ions is studied. The experiments focus on the ripple dynamics in a fluence range from 1.1 × 1017 cm-2 to 1.3 × 1019 cm-2 at ion incidence angles of 65° and 75° and ion energies of 600 and 1,200 eV. At low fluences a short-wavelength ripple structure emerges on the surface that is superimposed and later on dominated by long wavelength structures for increasing fluences. The coarsening of short wavelength ripples depends on the material system and angle of incidence. These observations are associated with the influence of reflected primary ions and gradient-dependent sputtering. The investigations reveal that coarsening of the pattern is a universal behavior for all investigated materials, just at the earliest accessible stage of surface evolution.

Loading...
Thumbnail Image
Item

Efficient suboxide sources in oxide molecular beam epitaxy using mixed metal + oxide charges: The examples of SnO and Ga2O

2020, Hoffmann, Georg, Budde, Melanie, Mazzolini, Piero, Bierwagend, Oliver

Sources of suboxides, providing several advantages over metal sources for the molecular beam epitaxy (MBE) of oxides, are conventionally realized by decomposing the corresponding oxide charge at extreme temperatures. By quadrupole mass spectrometry of the direct flux from an effusion cell, we compare this conventional approach to the reaction of a mixed oxide + metal charge as a source for suboxides with the examples of SnO2 + Sn → 2 SnO and Ga2O3 + 4 Ga → 3 Ga2O. The high decomposition temperatures of the pure oxide charge were found to produce a high parasitic oxygen background. In contrast, the mixed charges reacted at significantly lower temperatures, providing high suboxide fluxes without additional parasitic oxygen. For the SnO source, we found a significant fraction of Sn2O2 in the flux from the mixed charge that was basically absent in the flux from the pure oxide charge. We demonstrate the plasma-assisted MBE growth of SnO2 using the mixed Sn + SnO2 charge to require less activated oxygen and a significantly lower source temperature than the corresponding growth from a pure Sn charge. Thus, the sublimation of mixed metal + oxide charges provides an efficient suboxide source for the growth of oxides by MBE. Thermodynamic calculations predict this advantage for further oxides as well, e.g., SiO2, GeO2, Al2O3, In2O3, La2O3, and Pr2O3 © 2020 Author(s).

Loading...
Thumbnail Image
Item

Polarity Control in Group-III Nitrides beyond Pragmatism

2016, Mohn, Stefan, Stolyarchuk, Natalia, Markurt, Toni, Kirste, Ronny, Hoffmann, Marc P., Collazo, Ramón, Courville, Aimeric, Di Felice, Rosa, Sitar, Zlatko, Vennéguès, Philippe, Albrecht, Martin

Controlling the polarity of polar semiconductors on nonpolar substrates offers a wealth of device concepts in the form of heteropolar junctions. A key to realize such structures is an appropriate buffer-layer design that, in the past, has been developed by empiricism. GaN or ZnO on sapphire are prominent examples for that. Understanding the basic processes that mediate polarity, however, is still an unsolved problem. In this work, we study the structure of buffer layers for group-III nitrides on sapphire by transmission electron microscopy as an example. We show that it is the conversion of the sapphire surface into a rhombohedral aluminum-oxynitride layer that converts the initial N-polar surface to Al polarity. With the various AlxOyNz phases of the pseudobinary Al2O3-AlN system and their tolerance against intrinsic defects, typical for oxides, a smooth transition between the octahedrally coordinated Al in the sapphire and the tetrahedrally coordinated Al in AlN becomes feasible. Based on these results, we discuss the consequences for achieving either polarity and shed light on widely applied concepts in the field of group-III nitrides like nitridation and low-temperature buffer layers.

Loading...
Thumbnail Image
Item

Electroless-deposited platinum antennas for wireless surface acousticwave sensors

2019, Brachmann, E., Seifert, M., Neumann, N., Alshwawreh, N., Uhlemann, M., Menzel, S.B., Acker, J., Herold, S., Hoffmann, V., Gemming, T.

In an effort to develop a cost-efficient technology for wireless high-temperature surface acoustic wave sensors, this study presents an evaluation of a combined method that integrates physical vapor deposition with electroless deposition for the fabrication of platinum-based planar antennas. The proposed manufacturing process becomes attractive for narrow, thick, and sparse metallizations for antennas in the MHz to GHz frequency range. In detail, narrow platinum-based lines of a width down to 40 μm were electroless-deposited on γ -Al2O3 substrates using different seed layers. At first, the electrolyte chemistry was optimized to obtain the highest deposition rate. Films with various thickness were prepared and the electrical resistivity, microstructure, and chemical composition in the as-prepared state and after annealing at temperatures up to 1100 °C were evaluated. Using these material parameters, the antenna was simulated with an electromagnetic full-wave simulation tool and then fabricated. The electrical parameters, including the S-parameters of the antenna, were measured. The agreement between the simulated and the realized antenna is then discussed.

Loading...
Thumbnail Image
Item

Coherent interaction of atoms with a beam of light confined in a light cage

2021, Davidson-Marquis, Flavie, Gargiulo, Julian, Gómez-López, Esteban, Jang, Bumjoon, Kroh, Tim, Müller, Chris, Ziegler, Mario, Maier, Stefan A., Kübler, Harald, Schmidt, Markus A., Benson, Oliver

Controlling coherent interaction between optical fields and quantum systems in scalable, integrated platforms is essential for quantum technologies. Miniaturised, warm alkali-vapour cells integrated with on-chip photonic devices represent an attractive system, in particular for delay or storage of a single-photon quantum state. Hollow-core fibres or planar waveguides are widely used to confine light over long distances enhancing light-matter interaction in atomic-vapour cells. However, they suffer from inefficient filling times, enhanced dephasing for atoms near the surfaces, and limited light-matter overlap. We report here on the observation of modified electromagnetically induced transparency for a non-diffractive beam of light in an on-chip, laterally-accessible hollow-core light cage. Atomic layer deposition of an alumina nanofilm onto the light-cage structure was utilised to precisely tune the high-transmission spectral region of the light-cage mode to the operation wavelength of the atomic transition, while additionally protecting the polymer against the corrosive alkali vapour. The experiments show strong, coherent light-matter coupling over lengths substantially exceeding the Rayleigh range. Additionally, the stable non-degrading performance and extreme versatility of the light cage provide an excellent basis for a manifold of quantum-storage and quantum-nonlinear applications, highlighting it as a compelling candidate for all-on-chip, integrable, low-cost, vapour-based photon delay.

Loading...
Thumbnail Image
Item

Impact of rare earth doping on the luminescence of lanthanum aluminum silicate glasses for radiation sensing

2022, Shaw, Ruth E., Kalnins, Christopher A. G., Whittaker, Carly A., Moffatt, Jillian E., Tsiminis, Georgios, Klantsataya, Elizaveta, Ottaway, David, Spooner, Nigel A., Litzkendorf, Doris, Matthes, Anne, Schwuchow, Anka, Wondraczek, Katrin, Ebendorff-Heidepriem, Heike

Large core soft glass fibers have been demonstrated to be promising candidates as intrinsic fiber sensors for radiation detection and dosimetry applications. Doping with rare earth ions enhanced their radiation sensitivity. SiO2-Al2O3-La2O3 (SAL) glasses offer easy fabrication of large core fibers with high rare earth concentration and higher mechanical strength than soft glasses. This paper evaluates the suitability of the SAL glass type for radiation dosimetry based on optically stimulated luminescence (OSL) via a comprehensive investigation of the spectroscopic and dosimetric properties of undoped and differently rare earth doped bulk SAL glass samples. Due to the low intensity of the rare earth luminescence peaks in the 250–400 nm OSL detection range, the OSL response for all the SAL glasses is not caused by the rare earth ions but by radiation-induced defects that act as intrinsic centers for the recombination of electrons and holes produced by the ionizing radiation, trapped in fabrication induced defect centers, and then released via stimulation with 470 nm light. The rare earth ions interfere with these processes involving intrinsic centers. This dosimetric behavior of highly rare earth doped SAL glasses suggests that enhancement of OSL response requires lower rare earth concentrations and/or longer wavelength OSL detection range.

Loading...
Thumbnail Image
Item

PTFEP-Al2O3 hybrid nanowires reducing thrombosis and biofouling

2019, Haidar, Ayman, Ali, Awadelkareem A., Veziroglu, Salih, Fiutowski, Jacek, Eichler, Hermann, Müller, Isabelle, Kiefer, Karin, Faupel, Franz, Bischoff, Markus, Veith, Michael, Aktas, Oral Cenk, Abdul-Khaliq, Hashim

Thrombosis and bacterial infection are major problems in cardiovascular implants. Here we demonstrated that a superhydrophobic surface composed of poly(bis(2,2,2-trifluoroethoxy)phosphazene) (PTFEP)-Al2O3 hybrid nanowires (NWs) is effective to reduce both platelet adhesion/activation and bacterial adherence/colonization. The proposed approach allows surface modification of cardiovascular implants which have 3D complex geometries. © 2019 The Royal Society of Chemistry.

Loading...
Thumbnail Image
Item

Enhancement-mode Ga2O3 wrap-gate fin field-effect transistors on native (100) β-Ga2O3 substrate with high breakdown voltage

2016, Chabak, Kelson D., Moser, Neil, Green, Andrew J., Walker, Dennis E., Tetlak, Stephen E., Heller, Eric, Crespo, Antonio, Fitch, Robert, McCandless, Jonathan P., Leedy, Kevin, Baldini, Michele, Wagner, Gunter, Galazka, Zbigniew, Li, Xiuling, Jessen, Gregg

Sn-doped gallium oxide (Ga2O3) wrap-gate fin-array field-effect transistors (finFETs) were formed by top-down BCl3 plasma etching on a native semi-insulating Mg-doped (100) β-Ga2O3 substrate. The fin channels have a triangular cross-section and are approximately 300 nm wide and 200 nm tall. FinFETs, with 20 nm Al2O3 gate dielectric and ∼2 μm wrap-gate, demonstrate normally-off operation with a threshold voltage between 0 and +1 V during high-voltage operation. The ION/IOFF ratio is greater than 105 and is mainly limited by high on-resistance that can be significantly improved. At VG = 0, a finFET with 21 μm gate-drain spacing achieved a three-terminal breakdown voltage exceeding 600 V without a field-plate.

Loading...
Thumbnail Image
Item

Absolute EUV reflectivity measurements using a broadband high-harmonic source and an in situ single exposure reference scheme

2022, Abel, Johann J., Wiesner, Felix, Nathanael, Jan, Reinhard, Julius, Wünsche, Martin, Schmidl, Gabriele, Gawlik, Annett, Hübner, Uwe, Plentz, Jonathan, Rödel, Christian, Paulus, Gerhard G., Fuchs, Silvio

We present a tabletop setup for extreme ultraviolet (EUV) reflection spectroscopy in the spectral range from 40 to 100 eV by using high-harmonic radiation. The simultaneous measurements of reference and sample spectra with high energy resolution provide precise and robust absolute reflectivity measurements, even when operating with spectrally fluctuating EUV sources. The stability and sensitivity of EUV reflectivity measurements are crucial factors for many applications in attosecond science, EUV spectroscopy, and nano-scale tomography. We show that the accuracy and stability of our in situ referencing scheme are almost one order of magnitude better in comparison to subsequent reference measurements. We demonstrate the performance of the setup by reflective near-edge x-ray absorption fine structure measurements of the aluminum L2/3 absorption edge in α-Al2O3 and compare the results to synchrotron measurements.