Search Results

Now showing 1 - 2 of 2
  • Item
    Round robin comparison on quantitative nanometer scale magnetic field measurements by magnetic force microscopy
    (Amsterdam : Elsevier B.V., 2020) Hu, X.; Dai, G.; Sievers, S.; Fernández-Scarioni, A.; Corte-León, H.; Puttock, R.; Barton, C.; Kazakova, O.; Ulvr, M.; Klapetek, P.; Havlíček, M.; Nečas, D.; Tang, Y.; Neu, V.; Schumacher, H.W.
    Magnetic force microscopy (MFM) can be considered as a standard tool for nano-scale investigation of magnetic domain structures by probing the local stray magnetic field landscape of the measured sample. However, this generally provides only qualitative data. To quantify the stray magnetic fields, the MFM system must be calibrated. To that end, a transfer function (TF) approach was proposed, that, unlike point probe models, fully considers the finite extent of the MFM tip. However, albeit being comprehensive, the TF approach is not yet well established, mainly due to the ambiguities concerning the input parameters and the measurement procedure. Additionally, the calibration process represents an ill-posed problem which requires a regularization that introduces further parameters. In this paper we propose a guideline for quantitative stray field measurements by standard MFM tools in ambient conditions. All steps of the measurement and calibration procedure are detailed, including reference sample and sample under test (SUT) measurements and the data analysis. The suitability of the reference sample used in the present work for calibrated measurements on a sub-micron scale is discussed. A specific regularization approach based on a Pseudo-Wiener Filter is applied and combined with criteria for the numerical determination of a unique regularization parameter. To demonstrate the robustness of such a defined approach, a round robin comparison of magnetic field measurements was conducted by four laboratories. The guideline, the reference sample and the results of the round robin are discussed.
  • Item
    Polyester textile functionalization through incorporation of pH/thermo-responsive microgels. Part II: Polyester functionalization and characterization
    (Heidelberg : Springer, 2012) Glampedaki, P.; Calvimontes, A.; Dutschk, V.; Warmoeskerken, M.M.C.G.
    A new approach to functionalize the surface of polyester textiles is described in this study. Functionalization was achieved by incorporating pH/temperature-responsive polyelectrolyte microgels into the textile surface layer using UV irradiation. The aim of functionalization was to regulate polyester wettability according to ambient conditions by imparting stimuli-responsiveness from the microgel to the textile itself. Microgels consisted of pH/thermo-responsive microparticles of poly(N-isopropylacrylamide- co-acrylic acid) either alone or complexed with the pH-responsive natural polysaccharide chitosan. Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy, ζ-potential measurements, and topographical analysis were used for surface characterization. Wettability of polyester textiles was assessed by dynamic wetting, water vapor transfer, and moisture regain measurements. One of the main findings showed that the polyester surface was rendered pH-responsive, both in acidic and alkaline pH region, owing to the microgel incorporation. With a marked relaxation in their structure and an increase in their microporosity, the functionalized textiles exhibited higher water vapor transfer rates both at 20 and 40 °C, and 65% relative humidity compared with the reference polyester. Also, at 40 °C, i.e., above the microgel Lower Critical Solution Temperature, the functionalized polyester textiles had lower moisture regains than the reference. Finally, the type of the incorporated microgel affected significantly the polyester total absorption times, with an up to 300% increase in one case and an up to 80% decrease in another case. These findings are promising for the development of functional textile materials with possible applications in biotechnology, technical, and protective clothing.