Search Results

Now showing 1 - 10 of 18
  • Item
    Characterization of Bathyarchaeota genomes assembled from metagenomes of biofilms residing in mesophilic and thermophilic biogas reactors
    (London : BioMed Central Ltd., 2018) Maus, I.; Rumming, M.; Bergmann, I.; Heeg, K.; Pohl, M.; Nettmann, E.; Jaenicke, S.; Blom, J.; Pühler, A.; Schlüter, A.; Sczyrba, A.; Klocke, M.
    Background: Previous studies on the Miscellaneous Crenarchaeota Group, recently assigned to the novel archaeal phylum Bathyarchaeota, reported on the dominance of these Archaea within the anaerobic carbohydrate cycle performed by the deep marine biosphere. For the first time, members of this phylum were identified also in mesophilic and thermophilic biogas-forming biofilms and characterized in detail. Results: Metagenome shotgun libraries of biofilm microbiomes were sequenced using the Illumina MiSeq system. Taxonomic classification revealed that between 0.1 and 2% of all classified sequences were assigned to Bathyarchaeota. Individual metagenome assemblies followed by genome binning resulted in the reconstruction of five metagenome-assembled genomes (MAGs) of Bathyarchaeota. MAGs were estimated to be 65-92% complete, ranging in their genome sizes from 1.1 to 2.0 Mb. Phylogenetic classification based on core gene sets confirmed their placement within the phylum Bathyarchaeota clustering as a separate group diverging from most of the recently known Bathyarchaeota clusters. The genetic repertoire of these MAGs indicated an energy metabolism based on carbohydrate and amino acid fermentation featuring the potential for extracellular hydrolysis of cellulose, cellobiose as well as proteins. In addition, corresponding transporter systems were identified. Furthermore, genes encoding enzymes for the utilization of carbon monoxide and/or carbon dioxide via the Wood-Ljungdahl pathway were detected. Conclusions: For the members of Bathyarchaeota detected in the biofilm microbiomes, a hydrolytic lifestyle is proposed. This is the first study indicating that Bathyarchaeota members contribute presumably to hydrolysis and subsequent fermentation of organic substrates within biotechnological biogas production processes.
  • Item
    Development of a flow-fluorescence in situhybridization protocol for the analysis of microbial communities in anaerobic fermentation liquor
    (London : BioMed Central, 2013) Nettmann, Edith; Fröhling, Antje; Heeg, Kathrin; Klocke, Michael; Schlüter, Oliver; Mumme, Jan
    Background: The production of bio-methane from renewable raw material is of high interest because of the increasing scarcity of fossil fuels. The process of biomethanation is based on the inter- and intraspecific metabolic activity of a highly diverse and dynamic microbial community. The community structure of the microbial biocenosis varies between different biogas reactors and the knowledge about these microbial communities is still fragmentary. However, up to now no approaches are available allowing a fast and reliable access to the microbial community structure. Hence, the aim of this study was to originate a Flow-FISH protocol, namely a combination of flow cytometry and fluorescence in situ hybridization, for the analysis of the metabolically active microorganisms in biogas reactor samples. With respect to the heterogenic texture of biogas reactor samples and to collect all cells including those of cell aggregates and biofilms the development of a preceding purification procedure was indispensable. Results: Six different purification procedures with in total 29 modifications were tested. The optimized purification procedure combines the use of the detergent sodium hexametaphosphate with ultrasonic treatment and a final filtration step. By this treatment, the detachment of microbial cells from particles as well as the disbandment of cell aggregates was obtained at minimized cell loss. A Flow-FISH protocol was developed avoiding dehydration and minimizing centrifugation steps. In the exemplary application of this protocol on pure cultures as well as biogas reactor samples high hybridization rates were achieved for commonly established domain specific oligonucleotide probes enabling the specific detection of metabolically active bacteria and archaea. Cross hybridization and autofluorescence effects could be excluded by the use of a nonsense probe and negative controls, respectively. Conclusions: The approach described in this study enables for the first time the analysis of the metabolically active fraction of the microbial communities within biogas reactors by Flow-FISH.
  • Item
    Impact of energy crop rotation design on multiple aspects of resource efficiency
    (Hoboken, NJ : Wiley, 2016) Peter, Christiane; Glemnitz, Michael; Winter, Katharina; Kornatz, Peter; Müller, Janine; Heiermann, Monika; Aurbacher, Joachim
    Biogas production can cause environmental problems due to a biased alignment of one energy crop used as a feedstock, e.g., maize in Germany. Diversification of crop rotations and resource-efficient management can be the key to sustainable crop management. Four crop rotations on eight sites across Germany were evaluated in terms of their resource efficiency (area use, energy, and economic efficiency) to derive options. Analysis revealed high variation in all indicators under review, with a high variance explanation by the interaction between crop rotation and regional characteristics. Furthermore, results indicate that high area-specific methane yields do not equate to high energy efficiency. Crop management adaptation is a useful tool for optimizing resource efficiency.
  • Item
    Indicative Marker Microbiome Structures Deduced from the Taxonomic Inventory of 67 Full-Scale Anaerobic Digesters of 49 Agricultural Biogas Plants
    (Basel : MDPI, 2021) Hassa, Julia; Klang, Johanna; Benndorf, Dirk; Pohl, Marcel; Hülsemann, Benedikt; Mächtig, Torsten; Effenberger, Mathias; Pühler, Alfred; Schlüter, Andreas; Theuerl, Susanne
    There are almost 9500 biogas plants in Germany, which are predominantly operated with energy crops and residues from livestock husbandry over the last two decades. In the future, biogas plants must be enabled to use a much broader range of input materials in a flexible and demand-oriented manner. Hence, the microbial communities will be exposed to frequently varying process conditions, while an overall stable process must be ensured. To accompany this transition, there is the need to better understand how biogas microbiomes respond to management measures and how these responses affect the process efficiency. Therefore, 67 microbiomes originating from 49 agricultural, full-scale biogas plants were taxonomically investigated by 16S rRNA gene amplicon sequencing. These microbiomes were separated into three distinct clusters and one group of outliers, which are characterized by a specific distribution of 253 indicative taxa and their relative abundances. These indicative taxa seem to be adapted to specific process conditions which result from a different biogas plant operation. Based on these results, it seems to be possible to deduce/assess the general process condition of a biogas digester based solely on the microbiome structure, in particular on the distribution of specific indicative taxa, and without knowing the corresponding operational and chemical process parameters. Perspectively, this could allow the development of detection systems and advanced process models considering the microbial diversity.
  • Item
    The role of petrimonas mucosa ING2-E5at in mesophilic biogas reactor systems as deduced from multiomics analyses
    (Basel : MDPI AG, 2020) Maus, Irena; Tubbesing, Tom; Wibberg, Daniel; Heyer, Robert; Hassa, Julia; Tomazetto, Geizecler; Huang, Liren; Bunk, Boyke; Spröer, Cathrin; Benndorf, Dirk; Zverlov, Vladimir; Pühler, Alfred; Klocke, Michael; Sczyrba, Alexander; Schlüter, Andreas
    Members of the genera Proteiniphilum and Petrimonas were speculated to represent indicators reflecting process instability within anaerobic digestion (AD) microbiomes. Therefore, Petrimonas mucosa ING2-E5AT was isolated from a biogas reactor sample and sequenced on the PacBio RSII and Illumina MiSeq sequencers. Phylogenetic classification positioned the strain ING2-E5AT in close proximity to Fermentimonas and Proteiniphilum species (family Dysgonomonadaceae). ING2-E5AT encodes a number of genes for glycosyl-hydrolyses (GH) which are organized in Polysaccharide Utilization Loci (PUL) comprising tandem susCD-like genes for a TonB-dependent outer-membrane transporter and a cell surface glycan-binding protein. Different GHs encoded in PUL are involved in pectin degradation, reflecting a pronounced specialization of the ING2-E5AT PUL systems regarding the decomposition of this polysaccharide. Genes encoding enzymes participating in amino acids fermentation were also identified. Fragment recruitments with the ING2-E5AT genome as a template and publicly available metagenomes of AD microbiomes revealed that Petrimonas species are present in 146 out of 257 datasets supporting their importance in AD microbiomes. Metatranscriptome analyses of AD microbiomes uncovered active sugar and amino acid fermentation pathways for Petrimonas species. Likewise, screening of metaproteome datasets demonstrated expression of the Petrimonas PUL-specific component SusC providing further evidence that PUL play a central role for the lifestyle of Petrimonas species. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    The future agricultural biogas plant in Germany: A vision
    (Basel : MDPI AG, 2019) Theuerl, S.; Herrmann, C.; Heiermann, M.; Grundmann, P.; Landwehr, N.; Kreidenweis, U.; Prochnow, A.
    After nearly two decades of subsidized and energy crop-oriented development, agricultural biogas production in Germany is standing at a crossroads. Fundamental challenges need to be met. In this article we sketch a vision of a future agricultural biogas plant that is an integral part of the circular bioeconomy and works mainly on the base of residues. It is flexible with regard to feedstocks, digester operation, microbial communities and biogas output. It is modular in design and its operation is knowledge-based, information-driven and largely automated. It will be competitive with fossil energies and other renewable energies, profitable for farmers and plant operators and favorable for the national economy. In this paper we discuss the required contribution of research to achieve these aims.
  • Item
    Greenhouse gas emissions from broiler manure treatment options are lowest in well-managed biogas production
    (Amsterdam [u.a.] : Elsevier Science, 2020) Kreidenweis, Ulrich; Breier, Jannes; Herrmann, Christiane; Libra, Judy; Prochnow, Annette
    The production of broiler meat has increased significantly in the last decades in Germany and worldwide, and is projected to increase further in the future. As the number of animals raised increases, so too does the amount of manure produced. The identification of manure treatment options that cause low greenhouse gas emissions becomes ever more important. This study compares four treatment options for broiler manure followed by field spreading: storage before distribution, composting, anaerobic digestion in a biogas plant and production of biochar. For these options potential direct and indirect greenhouse gas emissions were assessed for the situation in Germany. Previous analyses have shown that greenhouse gas balances of manure management are often strongly influenced by a small number of processes. Therefore, in this study major processes were represented with several variants and the sensitivity of model results to different management decisions and uncertain parameters was assessed. In doing so, correlations between processes were considered, in which higher emissions earlier on in the process chain reduce emissions later. The results show that biogas production from broiler manure leads to the lowest greenhouse gas emissions in most of the analysed cases, mainly due to the emission savings related to the substitution of mineral fertilizers and the production of electricity. Pyrolysis of the manure and subsequent field spreading as a soil amendment can lead to similarly low emissions due to the long residence time of the biochar, and may even be the better option than poorly managed biogas production. Composting is the treatment option resulting in highest emissions of greenhouse gases, due to high ammonia volatilization, and is likely worse than untreated storage in this respect. These results are relatively insensitive to the length of transport required for field spreading, but high uncertainties are associated with the use of emission factors.
  • Item
    Metaproteome analysis reveals that syntrophy, competition, and phage-host interaction shape microbial communities in biogas plants
    (London : Biomed Central, 2019) Heyer, R.; Schallert, K.; Siewert, C.; Kohrs, F.; Greve, J.; Maus, I.; Klang, J.; Klocke, M.; Heiermann, M.; Hoffmann, M.; Püttker, S.; Calusinska, M.; Zoun, R.; Saake, G.; Benndorf, D.; Reichl, U.
    Background: In biogas plants, complex microbial communities produce methane and carbon dioxide by anaerobic digestion of biomass. For the characterization of the microbial functional networks, samples of 11 reactors were analyzed using a high-resolution metaproteomics pipeline. Results: Examined methanogenesis archaeal communities were either mixotrophic or strictly hydrogenotrophic in syntrophy with bacterial acetate oxidizers. Mapping of identified metaproteins with process steps described by the Anaerobic Digestion Model 1 confirmed its main assumptions and also proposed some extensions such as syntrophic acetate oxidation or fermentation of alcohols. Results indicate that the microbial communities were shaped by syntrophy as well as competition and phage-host interactions causing cell lysis. For the families Bacillaceae, Enterobacteriaceae, and Clostridiaceae, the number of phages exceeded up to 20-fold the number of host cells. Conclusion: Phage-induced cell lysis might slow down the conversion of substrates to biogas, though, it could support the growth of auxotrophic microbes by cycling of nutrients. © 2019 The Author(s).
  • Item
    Metagenome, metatranscriptome, and metaproteome approaches unraveled compositions and functional relationships of microbial communities residing in biogas plants
    (Berlin ; Heidelberg ; New York : Springer, 2018-4-30) Hassa, Julia; Maus, Irena; Off, Sandra; Pühler, Alfred; Scherer, Paul; Klocke, Michael; Schlüter, Andreas
    The production of biogas by anaerobic digestion (AD) of agricultural residues, organic wastes, animal excrements, municipal sludge, and energy crops has a firm place in sustainable energy production and bio-economy strategies. Focusing on the microbial community involved in biomass conversion offers the opportunity to control and engineer the biogas process with the objective to optimize its efficiency. Taxonomic profiling of biogas producing communities by means of high-throughput 16S rRNA gene amplicon sequencing provided high-resolution insights into bacterial and archaeal structures of AD assemblages and their linkages to fed substrates and process parameters. Commonly, the bacterial phyla Firmicutes and Bacteroidetes appeared to dominate biogas communities in varying abundances depending on the apparent process conditions. Regarding the community of methanogenic Archaea, their diversity was mainly affected by the nature and composition of the substrates, availability of nutrients and ammonium/ammonia contents, but not by the temperature. It also appeared that a high proportion of 16S rRNA sequences can only be classified on higher taxonomic ranks indicating that many community members and their participation in AD within functional networks are still unknown. Although cultivation-based approaches to isolate microorganisms from biogas fermentation samples yielded hundreds of novel species and strains, this approach intrinsically is limited to the cultivable fraction of the community. To obtain genome sequence information of non-cultivable biogas community members, metagenome sequencing including assembly and binning strategies was highly valuable. Corresponding research has led to the compilation of hundreds of metagenome-assembled genomes (MAGs) frequently representing novel taxa whose metabolism and lifestyle could be reconstructed based on nucleotide sequence information. In contrast to metagenome analyses revealing the genetic potential of microbial communities, metatranscriptome sequencing provided insights into the metabolically active community. Taking advantage of genome sequence information, transcriptional activities were evaluated considering the microorganism’s genetic background. Metaproteome studies uncovered enzyme profiles expressed by biogas community members. Enzymes involved in cellulose and hemicellulose decomposition and utilization of other complex biopolymers were identified. Future studies on biogas functional microbial networks will increasingly involve integrated multi-omics analyses evaluating metagenome, transcriptome, proteome, and metabolome datasets. © 2018, The Author(s).
  • Item
    Effect of Liquid Hot Water Pretreatment on Hydrolysates Composition and Methane Yield of Rice Processing Residue
    (Basel : MDPI, 2021) López González, Lisbet Mailin; Heiermann, Monika
    Lignocellulosic rice processing residue was pretreated in liquid hot water (LHW) at three different temperatures (140, 160, and 180 °C) and two pretreatment times (10 and 20 min) in order to assess its effects on hydrolysates composition, matrix structural changes and methane yield. The concentrations of acetic acid, 5-hydroxymethylfurfural and furfural increased with pretreatment severity (log Ro). The maximum methane yield (276 L kg−1 VS) was achieved under pretreatment conditions of 180 °C for 20 min, with a 63% increase compared to untreated biomass. Structural changes resulted in a slight removal of silica on the upper portion of rice husks, visible predominantly at maximum severity. However, the outer epidermis was kept well organized. The results indicate, at severities 2.48 ≤ log Ro ≤ 3.66, a significant potential for the use of LHW to improve methane production from rice processing residue.