Search Results

Now showing 1 - 8 of 8
Loading...
Thumbnail Image
Item

In situ Raman spectroscopy on silicon nanowire anodes integrated in lithium ion batteries

2019, Krause, A., Tkacheva, O., Omar, A., Langklotz, U., Giebeler, L., Dörfler, S., Fauth, F., Mikolajick, T., Weber, W.M.

Rapid decay of silicon anodes during lithiation poses a significant challenge in application of silicon as an anode material in lithium ion batteries. In situ Raman spectroscopy is a powerful method to study the relationship between structural and electrochemical data during electrode cycling and to allow the observation of amorphous as well as liquid and transient species in a battery cell. Herein, we present in situ Raman spectroscopy on high capacity electrode using uncoated and carbon-coated silicon nanowires during first lithiation and delithiation cycle in an optimized lithium ion battery setup and complement the results with operando X-ray reflection diffraction measurements. During lithiation, we were able to detect a new Raman signal at 1859 cm−1 especially on uncoated silicon nanowires. The detailed in situ Raman measurement of the first lithiation/delithiation cycle allowed to differentiate between morphology changes of the electrode as well as interphase formation from electrolyte components.

Loading...
Thumbnail Image
Item

Continuous wet chemical synthesis of Mo(C,N,O)x as anode materials for Li-ion batteries

2023, Abdirahman Mohamed, Mana, Arnold, Stefanie, Janka, Oliver, Quade, Antje, Schmauch, Jörg, Presser, Volker, Kickelbick, Guido

Molybdenum carbides, oxides, and mixed anionic carbide–nitride–oxides Mo(C,N,O)x are potential anode materials for lithium-ion batteries. Here we present the preparation of hybrid inorganic–organic precursors by a precipitation reaction of ammonium heptamolybdate ((NH4)6Mo7O24) with para-phenylenediamine in a continuous wet chemical process known as a microjet reactor. The mixing ratio of the two components has a crucial influence on the chemical composition of the obtained material. Pyrolysis of the precipitated precursor compounds preserved the size and morphology of the micro- to nanometer-sized starting materials. Changes in pyrolysis conditions such as temperature and time resulted in variations of the final compositions of the products, which consisted of mixtures of Mo(C,N,O)x, MoO2, Mo2C, Mo2N, and Mo. We optimized the reaction conditions to obtain carbide-rich phases. When evaluated as an anode material for application in lithium-ion battery half-cells, one of the optimized materials shows a remarkably high capacity of 933 mA h g−1 after 500 cycles. The maximum capacity is reached after an activation process caused by various conversion reactions with lithium.

Loading...
Thumbnail Image
Item

High-rate amorphous SnO2 nanomembrane anodes for Li-ion batteries with a long cycling life

2014, Liu, Xianghong, Zhang, Jun, Si, Wenping, Xi, Lixia, Oswald, Steffen, Yan, Chenglin, Schmidt, Oliver G.

Amorphous SnO2 nanomembranes as anodes for lithium ion batteries demonstrate a long cycling life of 1000 cycles at 1600 mA g−1 with a high reversible capacity of 854 mA h g−1 and high rate capability up to 40 A g−1. The superior performance is because of the structural features of the amorphous SnO2 nanomembranes. The nanoscale thickness provides considerably reduced diffusion paths for Li+. The amorphous structure can accommodate the strain of lithiation/delithiation, especially during the initial lithiation. More importantly, the mechanical feature of deformation can buffer the strain of repeated lithiation/delithiation, thus putting off pulverization. In addition, the two-dimensional transport pathways in between nanomembranes make the pseudo-capacitance more prominent. The encouraging results demonstrate the significant potential of nanomembranes for high power batteries.

Loading...
Thumbnail Image
Item

An efficient two-polymer binder for high-performance silicon nanoparticle-based lithium-ion batteries: A systematic case study with commercial polyacrylic acid and polyvinyl butyral polymers

2019, Urbanski, A., Omar, A., Guo, J., Janke, A., Reuter, U., Malanin, M., Schmidt, F., Jehnichen, D., Holzschuh, M., Simon, F., Eichhorn, K.-J., Giebeler, L., Uhlmann, P.

Silicon is one of the most promising anode materials for high energy density lithium ion batteries (LIBs) due to its high theoretical capacity and natural abundance. Unfortunately, significant challenges arise due to the large volume change of silicon upon lithiation/delithiation which inhibit its broad commercialization. An advanced binder can, in principle, reversibly buffer the volume change, and maintain strong adhesion toward various components as well as the current collector. In this work, we present the first report on the applicability of polyvinyl butyral (PVB) polymer as a binder component for silicon nanoparticles-based LIBs. Characteristic binder properties of commercial PVB and polyacrylic acid (PAA) polymers are compared. The work focuses on polymer mixtures of PVB polymers with PAA, for an improved binder composition which incorporates their individual advantages. Different ratios of polymers are systematically studied to understand the effect of particular polymer chains, functional groups and mass fractions, on the electrochemical performance. We demonstrate a high-performance polymer mixture which exhibits good binder-particle interaction and strong adhesion to Cu-foil. PAA/PVB-based electrode with a Si loading of ∼1 mg/cm2 tested between 0.01 and 1.2 V vs. Li/Li+ demonstrate specific capacities as high as 2170 mAh/g after the first hundred cycles. © The Author(s) 2019.

Loading...
Thumbnail Image
Item

Anodically fabricated TiO2–SnO2 nanotubes and their application in lithium ion batteries

2016, Madian, M., Klose, M., Jaumann, T., Gebert, A., Oswald, S., Ismail, N., Eychmüller, A., Eckerta, J., Giebeler, L.

Developing novel electrode materials is a substantial issue to improve the performance of lithium ion batteries. In the present study, single phase Ti–Sn alloys with different Sn contents of 1 to 10 at% were used to fabricate Ti–Sn–O nanotubes via a straight-forward anodic oxidation step in an ethylene glycolbased solution containing NH4F. Various characterization tools such as SEM, EDXS, TEM, XPS and Raman spectroscopy were used to characterize the grown nanotube films. Our results reveal the successful formation of mixed TiO2/SnO2 nanotubes in the applied voltage range of 10–40 V. The as-formed nanotubes are amorphous and their dimensions are precisely controlled by tuning the formation voltage which turns Ti–Sn–O nanotubes into highly attractive materials for various applications. As an example, the Ti–Sn–O nanotubes offer promising properties as anode materials in lithium ion batteries. The electrochemical performance of the grown nanotubes was evaluated against a Li/Li+ electrode at a current density of 504 mA cm2. The results demonstrate that TiO2/SnO2 nanotubes prepared at 40 V on a TiSn1 alloy substrate display an average 1.4 fold increase in areal capacity with excellent cycling stability over more than 400 cycles compared to the pure TiO2 nanotubes fabricated and tested under identical conditions. This electrode was tested at current densities of 50, 100, 252, 504 and 1008 mA cm2 exhibiting average capacities of 780, 660, 490, and 405 mA cm2 (i.e. 410, 345, 305 and 212 mA h g1), respectively. The remarkably improved electrochemical performance is attributed to enhanced lithium ion diffusion which originates from the presence of SnO2 nanotubes and the high surface area of the mixed oxide tubes. The TiO2/SnO2 electrodes retain their original tubular structure after electrochemical cycling with only slight changes in their morphology.

Loading...
Thumbnail Image
Item

Atomic Sn–enabled high-utilization, large-capacity, and long-life Na anode

2022, Xu, Fei, Qu, Changzhen, Lu, Qiongqiong, Meng, Jiashen, Zhang, Xiuhai, Xu, Xiaosa, Qiu, Yuqian, Ding, Baichuan, Yang, Jiaying, Cao, Fengren, Yang, Penghui, Jiang, Guangshen, Kaskel, Stefan, Ma, Jingyuan, Li, Liang, Zhang, Xingcai, Wang, Hongqiang

Constructing robust nucleation sites with an ultrafine size in a confined environment is essential toward simultaneously achieving superior utilization, high capacity, and long-term durability in Na metal-based energy storage, yet remains largely unexplored. Here, we report a previously unexplored design of spatially confined atomic Sn in hollow carbon spheres for homogeneous nucleation and dendrite-free growth. The designed architecture maximizes Sn utilization, prevents agglomeration, mitigates volume variation, and allows complete alloying-dealloying with high-affinity Sn as persistent nucleation sites, contrary to conventional spatially exposed large-size ones without dealloying. Thus, conformal deposition is achieved, rendering an exceptional capacity of 16 mAh cm−2 in half-cells and long cycling over 7000 hours in symmetric cells. Moreover, the well-known paradox is surmounted, delivering record-high Na utilization (e.g., 85%) and large capacity (e.g., 8 mAh cm−2) while maintaining extraordinary durability over 5000 hours, representing an important breakthrough for stabilizing Na anode.

Loading...
Thumbnail Image
Item

High-defect hydrophilic carbon cuboids anchored with Co/CoO nanoparticles as highly efficient and ultra-stable lithium-ion battery anodes

2016, Sun, Xiaolei, Hao, Guang-Ping, Lu, Xueyi, Xi, Lixia, Liu, Bo, Si, Wenping, Ma, Chuansheng, Liu, Qiming, Zhang, Qiang, Kaskel, Stefan, Schmidt, Oliver G.

We propose an effective strategy to engineer a unique kind of porous carbon cuboid with tightly anchored cobalt/cobalt oxide nanoparticles (PCC–CoOx) that exhibit outstanding electrochemical performance for many key aspects of lithium-ion battery electrodes. The host carbon cuboid features an ultra-polar surface reflected by its high hydrophilicity and rich surface defects due to high heteroatom doping (N-/O-doping both higher than 10 atom%) as well as hierarchical pore systems. We loaded the porous carbon cuboid with cobalt/cobalt oxide nanoparticles through an impregnation process followed by calcination treatment. The resulting PCC–CoOx anode exhibits superior rate capability (195 mA h g−1 at 20 A g−1) and excellent cycling stability (580 mA h g−1 after 2000 cycles at 1 A g−1 with only 0.0067% capacity loss per cycle). Impressively, even after an ultra-long cycle life exceeding 10 000 cycles at 5 A g−1, the battery can recover to 1050 mA h g−1 at 0.1 A g−1, perhaps the best performance demonstrated so far for lithium storage in cobalt oxide-based electrodes. This study provides a new perspective to engineer long-life, high-power metal oxide-based electrodes for lithium-ion batteries through controlling the surface chemistry of carbon host materials.

Loading...
Thumbnail Image
Item

Polysulfide driven degradation in lithium–sulfur batteries during cycling – quantitative and high time-resolution operando X-ray absorption study for dissolved polysulfides probed at both electrode sides

2021, Zech, Claudia, Hönicke, Philipp, Kayser, Yves, Risse, Sebastian, Grätz, Olga, Stamm, Manfred, Beckhoff, Burkhard

The development of operando characterization techniques on realistic batteries is essential for an advanced mechanistic understanding in battery chemistry and, therefore, contributes to their further performance improvement. This manuscript presents operando Near-Edge X-ray Absorption Spectroscopy (NEXAFS) traceable to the SI units (SI is the abbreviation for the International System of Units) during multiple charge–discharge cycles on both electrodes of lithium–sulfur (Li/S) coin cells which enables an absolute quantification of dissolved polysulfides with no need for calibration samples or reference material. We could reveal that during the charging process, polysulfide (PS) movement from the negative to the positive electrode is inhibited. This leads to a steady increase of dissolved polysulfides at the anode side and, therefore, is one of the key points for capacity fading. We quantitatively track the polysulfides dissolved in the electrolyte and correlate for the first time their evolution with the capacity fading of the cell. We analyze the appearance of PS during cell operation at the cathode and anode side to characterize the transport mechanisms of the polysulfide shuttle phenomena and to reveal quantitative information about their evolution at different states of charge and states of health. Our cell design suppresses the contribution of cathodic sulfur, which is mandatory for reference-sample-free quantification in X-ray spectrometry and allows us to use only slightly modified standard coin cell batteries.