Search Results

Now showing 1 - 2 of 2
  • Item
    Bio-responsive polymer hydrogels homeostatically regulate blood coagulation
    (London : Nature Publishing Group, 2013) Maitz, Manfred F.; Freudenberg, U.; Tsurkan, M.V.; Fischer, M.; Beyrich, T.; Werner, C.
    Bio-responsive polymer architectures can empower medical therapies by engaging molecular feedback-response mechanisms resembling the homeostatic adaptation of living tissues to varying environmental constraints. Here we show that a blood coagulation-responsive hydrogel system can deliver heparin in amounts triggered by the environmental levels of thrombin, the key enzyme of the coagulation cascade, which - in turn - becomes inactivated due to released heparin. The bio-responsive hydrogel quantitatively quenches blood coagulation over several hours in the presence of pro-coagulant stimuli and during repeated incubation with fresh, non-anticoagulated blood. These features enable the introduced material to provide sustainable, autoregulated anticoagulation, addressing a key challenge of many medical therapies. Beyond that, the explored concept may facilitate the development of materials that allow the effective and controlled application of drugs and biomolecules.
  • Item
    Platelets are key in cold physical plasma-facilitated blood coagulation in mice
    (Amsterdam [u.a.] : Elsevier, 2017) Bekeschus, Sander; Brüggemeier, Janik; Hackbarth, Christine; Woedtke, Thomas von; Partecke, Lars-Ivo; van der Linde, Julia
    Purpose: Surgical interventions inevitably lead to destruction of blood vessels. This is especially dangerous in anticoagulated patients. Electrocauterization is a frequently used technique to seal incised tissue. However, leading to a superficial layer of necrotic tissue, the treated area evolves a high vulnerability to contact, making it prone to detachment. As a result, dangerous postoperative bleeding may occur. Cold physical plasma was previously suggested as a pro-coagulant treatment method. It mainly acts by expelling a delicate mixture of oxidants. We therefore tested the suitability of an atmospheric pressure plasma jet (kINPen MED) as a new medical device for sufficient blood coagulation in a murine model of liver incision. Methods: Plasma treatment of murine blood ex vivo induced sufficient coagula. This effect did not affect any tested parameter of plasmatic coagulation cascade, suggesting the mechanism to be related to cellular coagulation. Indeed, isolated platelets were significantly activated following exposure to plasma, although this effect was less pronounced in whole blood. To analyze the biological effect of plasma-on blood coagulation in vivo, mice were anticoagulated (clopidogrel inhibiting cellular and rivaroxaban inhibiting plasmatic hemostasis) or received vehicle only. Afterwards, a partial resection of the left lateral liver lobe was performed. The quantification of the blood loss after liver incision followed by treatment with kINPen MED plasma or electrocauterization revealed a similar and significant hemostatic performance in native and rivaroxaban but not clopidogrel-treated animals compared to argon gas-treated controls. In contrast to electrocauterization, kINPen MED plasma treatment did not cause necrotic cell layers. Conclusion: Our results propose a prime importance of platelets in cold physical plasma-mediated hemostasis and suggest a clinical benefit of kINPen MED plasma treatment as coagulation device in liver surgery.