Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

A full year of aerosol size distribution data from the central Arctic under an extreme positive Arctic Oscillation: insights from the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition

2023, Boyer, Matthew, Aliaga, Diego, Pernov, Jakob Boyd, Angot, Hélène, Quéléver, Lauriane L. J., Dada, Lubna, Heutte, Benjamin, Dall'Osto, Manuel, Beddows, David C. S., Brasseur, Zoé, Beck, Ivo, Bucci, Silvia, Duetsch, Marina, Stohl, Andreas, Laurila, Tiia, Asmi, Eija, Massling, Andreas, Thomas, Daniel Charles, Nøjgaard, Jakob Klenø, Chan, Tak, Sharma, Sangeeta, Tunved, Peter, Krejci, Radovan, Hansson, Hans Christen, Bianchi, Federico, Lehtipalo, Katrianne, Wiedensohler, Alfred, Weinhold, Kay, Kulmala, Markku, Petäjä, Tuukka, Sipilä, Mikko, Schmale, Julia, Jokinen, Tuija

The Arctic environment is rapidly changing due to accelerated warming in the region. The warming trend is driving a decline in sea ice extent, which thereby enhances feedback loops in the surface energy budget in the Arctic. Arctic aerosols play an important role in the radiative balance and hence the climate response in the region, yet direct observations of aerosols over the Arctic Ocean are limited. In this study, we investigate the annual cycle in the aerosol particle number size distribution (PNSD), particle number concentration (PNC), and black carbon (BC) mass concentration in the central Arctic during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition. This is the first continuous, year-long data set of aerosol PNSD ever collected over the sea ice in the central Arctic Ocean. We use a k-means cluster analysis, FLEXPART simulations, and inverse modeling to evaluate seasonal patterns and the influence of different source regions on the Arctic aerosol population. Furthermore, we compare the aerosol observations to land-based sites across the Arctic, using both long-term measurements and observations during the year of the MOSAiC expedition (2019-2020), to investigate interannual variability and to give context to the aerosol characteristics from within the central Arctic. Our analysis identifies that, overall, the central Arctic exhibits typical seasonal patterns of aerosols, including anthropogenic influence from Arctic haze in winter and secondary aerosol processes in summer. The seasonal pattern corresponds to the global radiation, surface air temperature, and timing of sea ice melting/freezing, which drive changes in transport patterns and secondary aerosol processes. In winter, the Norilsk region in Russia/Siberia was the dominant source of Arctic haze signals in the PNSD and BC observations, which contributed to higher accumulation-mode PNC and BC mass concentrations in the central Arctic than at land-based observatories. We also show that the wintertime Arctic Oscillation (AO) phenomenon, which was reported to achieve a record-breaking positive phase during January-March 2020, explains the unusual timing and magnitude of Arctic haze across the Arctic region compared to longer-term observations. In summer, the aerosol PNCs of the nucleation and Aitken modes are enhanced; however, concentrations were notably lower in the central Arctic over the ice pack than at land-based sites further south. The analysis presented herein provides a current snapshot of Arctic aerosol processes in an environment that is characterized by rapid changes, which will be crucial for improving climate model predictions, understanding linkages between different environmental processes, and investigating the impacts of climate change in future Arctic aerosol studies.

Loading...
Thumbnail Image
Item

Enhanced stratosphere/troposphere coupling during extreme warm stratospheric events with strong polar-night jet oscillation

2018, Peters, D.H.W., Schneidereit, A., Karpechko, A.Y.

Extreme warm stratospheric events during polar winters from ERA-Interim reanalysis and CMIP5-ESM-LR runs were separated by duration and strength of the polar-night jet oscillation (PJO) using a high statistical confidence level of three standard deviations (strong-PJO events). With a composite analysis, we demonstrate that strong-PJO events show a significantly stronger downward propagating signal in both, northern annular mode (NAM) and zonal mean zonal wind anomaly in the stratosphere in comparison with non-PJO events. The lower stratospheric EP-flux-divergence difference in ERA-Interim was stronger in comparison to long-term CMIP5-ESM-LR runs (by a factor of four). This suggests that stratosphere-troposphere coupling is stronger in ERA-Interim than in CMIP5-ESM-LR. During the 60 days following the central date (CD), the Arctic oscillation signal was more intense during strong-PJO events than during non-PJO events in ERA-Interim data in comparison to CMIP5-ESM-LR runs. During the 15-day phase after CD, strong PJO events had a significant increase in stratospheric ozone, upper tropospheric zonally asymmetric impact, and a regional surface impact in ERA-Interim. Finally, we conclude that the applied high statistical threshold gives a clearer separation of extreme warm stratospheric events into strong-PJO events and non-PJO events including their different downward propagating NAM signal and tropospheric impacts. © 2018 by the authors.