Search Results

Now showing 1 - 8 of 8
  • Item
    Magnetofluidic platform for multidimensional magnetic and optical barcoding of droplets
    (Cambridge : RSC, 2014) Lin, Gungun; Makarov, Denys; Medina-Sánchez, Mariana; Guix, Maria; Baraban, Larysa; Cuniberti, Gianaurelio; Schmidt, Oliver G.
    We present a concept of multidimensional magnetic and optical barcoding of droplets based on a magnetofluidic platform. The platform comprises multiple functional areas, such as an encoding area, an encoded droplet pool and a magnetic decoding area with integrated giant magnetoresistive (GMR) sensors. To prove this concept, penicillin functionalized with fluorescent dyes is coencapsulated with magnetic nanoparticles into droplets. While fluorescent dyes are used as conventional optical barcodes which are decoded with an optical decoding setup, an additional dimensionality of barcodes is created by using magnetic nanoparticles as magnetic barcodes for individual droplets and integrated micro-patterned GMR sensors as the corresponding magnetic decoding devices. The strategy of incorporating a magnetic encoding scheme provides a dynamic range of ~40 dB in addition to that of the optical method. When combined with magnetic barcodes, the encoding capacity can be increased by more than 1 order of magnitude compared with using only optical barcodes, that is, the magnetic platform provides more than 10 unique magnetic codes in addition to each optical barcode. Besides being a unique magnetic functional element for droplet microfluidics, the platform is capable of on-demand facile magnetic encoding and real-time decoding of droplets which paves the way for the development of novel non-optical encoding schemes for highly multiplexed droplet-based biological assays.
  • Item
    Switchable magnetic bulk photovoltaic effect in the two-dimensional magnet CrI3
    (London : Nature Publishing Group, 2019) Zhang, Y.; Holder, T.; Ishizuka, H.; de Juan, F.; Nagaosa, N.; Felser, C.; Yan, B.
    The bulk photovoltaic effect (BPVE) rectifies light into the dc current in a single-phase material and attracts the interest to design high-efficiency solar cells beyond the pn junction paradigm. Because it is a hot electron effect, the BPVE surpasses the thermodynamic Shockley–Queisser limit to generate above-band-gap photovoltage. While the guiding principle for BPVE materials is to break the crystal centrosymmetry, here we propose a magnetic photogalvanic effect (MPGE) that introduces the magnetism as a key ingredient and induces a giant BPVE. The MPGE emerges from the magnetism-induced asymmetry of the carrier velocity in the band structure. We demonstrate the MPGE in a layered magnetic insulator CrI3, with much larger photoconductivity than any previously reported results. The photocurrent can be reversed and switched by controllable magnetic transitions. Our work paves a pathway to search for magnetic photovoltaic materials and to design switchable devices combining magnetic, electronic, and optical functionalities.
  • Item
    Strong and ductile high temperature soft magnets through Widmanstätten precipitates
    ([London] : Nature Publishing Group UK, 2023) Han, Liuliu; Maccari, Fernando; Soldatov, Ivan; Peter, Nicolas J.; Souza Filho, Isnaldi R.; Schäfer, Rudolf; Gutfleisch, Oliver; Li, Zhiming; Raabe, Dierk
    Fast growth of sustainable energy production requires massive electrification of transport, industry and households, with electrical motors as key components. These need soft magnets with high saturation magnetization, mechanical strength, and thermal stability to operate efficiently and safely. Reconciling these properties in one material is challenging because thermally-stable microstructures for strength increase conflict with magnetic performance. Here, we present a material concept that combines thermal stability, soft magnetic response, and high mechanical strength. The strong and ductile soft ferromagnet is realized as a multicomponent alloy in which precipitates with a large aspect ratio form a Widmanstätten pattern. The material shows excellent magnetic and mechanical properties at high temperatures while the reference alloy with identical composition devoid of precipitates significantly loses its magnetization and strength at identical temperatures. The work provides a new avenue to develop soft magnets for high-temperature applications, enabling efficient use of sustainable electrical energy under harsh operating conditions.
  • Item
    Air-stable redox-active nanomagnets with lanthanide spins radical-bridged by a metal–metal bond
    (London : Nature Publishing Group, 2019) Liu, F.; Velkos, G.; Krylov, D.S.; Spree, L.; Zalibera, M.; Ray, R.; Samoylova, N.A.; Chen, C.-H.; Rosenkranz, M.; Schiemenz, S.; Ziegs, F.; Nenkov, K.; Kostanyan, A.; Greber, T.; Wolter, A.U.B.; Richter, M.; Büchner, B.; Avdoshenko, S.M.; Popov, A.A.
    Engineering intramolecular exchange interactions between magnetic metal atoms is a ubiquitous strategy for designing molecular magnets. For lanthanides, the localized nature of 4f electrons usually results in weak exchange coupling. Mediating magnetic interactions between lanthanide ions via radical bridges is a fruitful strategy towards stronger coupling. In this work we explore the limiting case when the role of a radical bridge is played by a single unpaired electron. We synthesize an array of air-stable Ln 2 @C 80 (CH 2 Ph) dimetallofullerenes (Ln 2 = Y 2 , Gd 2 , Tb 2 , Dy 2 , Ho 2 , Er 2 , TbY, TbGd) featuring a covalent lanthanide-lanthanide bond. The lanthanide spins are glued together by very strong exchange interactions between 4f moments and a single electron residing on the metal–metal bonding orbital. Tb 2 @C 80 (CH 2 Ph) shows a gigantic coercivity of 8.2 Tesla at 5 K and a high 100-s blocking temperature of magnetization of 25.2 K. The Ln-Ln bonding orbital in Ln 2 @C 80 (CH 2 Ph) is redox active, enabling electrochemical tuning of the magnetism.
  • Item
    Tuning the interplay between nematicity and spin fluctuations in Na1-x Li x FeAs superconductors
    (London : Nature Publishing Group, 2018) Baek, S.-H.; Bhoi, D.; Nam, W.; Lee, B.; Efremov, D.V.; Büchner, B.; Kim, K.H.
    Strong interplay of spin and charge/orbital degrees of freedom is the fundamental characteristic of the iron-based superconductors (FeSCs), which leads to the emergence of a nematic state as a rule in the vicinity of the antiferromagnetic state. Despite intense debate for many years, however, whether nematicity is driven by spin or orbital fluctuations remains unsettled. Here, by use of transport, magnetization, and 75As nuclear magnetic resonance (NMR) measurements, we show a striking transformation of the relationship between nematicity and spin fluctuations (SFs) in Na1-x Li x FeAs; For x ≤ 0.02, the nematic transition promotes SFs. In contrast, for x ≥ 0.03, the system undergoes a non-magnetic phase transition at a temperature T 0 into a distinct nematic state that suppresses SFs. Such a drastic change of the spin fluctuation spectrum associated with nematicity by small doping is highly unusual, and provides insights into the origin and nature of nematicity in FeSCs.
  • Item
    Large magneto-Seebeck effect in magnetic tunnel junctions with half-metallic Heusler electrodes
    (London : Nature Publishing Group, 2017) Boehnke, A.; Martens, U.; Sterwerf, C.; Niesen, A.; Huebner, T.; Von Der Ehe, M.; Meinert, M.; Kuschel, T.; Thomas, A.; Heiliger, C.; Münzenberg, M.; Reiss, G.
    Spin caloritronics studies the interplay between charge-, heat- and spin-currents, which are initiated by temperature gradients in magnetic nanostructures. A plethora of new phenomena has been discovered that promises, e.g., to make wasted heat in electronic devices useable or to provide new read-out mechanisms for information. However, only few materials have been studied so far with Seebeck voltages of only some microvolt, which hampers applications. Here, we demonstrate that half-metallic Heusler compounds are hot candidates for enhancing spin-dependent thermoelectric effects. This becomes evident when considering the asymmetry of the spin-split density of electronic states around the Fermi level that determines the spin-dependent thermoelectric transport in magnetic tunnel junctions. We identify Co2FeAl and Co2FeSi Heusler compounds as ideal due to their energy gaps in the minority density of states, and demonstrate devices with substantially larger Seebeck voltages and tunnel magneto-Seebeck effect ratios than the commonly used Co-Fe-B-based junctions.
  • Item
    Two types of magnetic shape-memory effects from twinned microstructure and magneto-structural coupling in Fe1 +yTe
    (Washington : National Academy of Sciences, 2019) Rößler, S.; Koz, C.; Wang, Z.; Skourski, Y.; Doerr, M.; Kasinathan, D.; Rosner, H.; Schmidt, M.; Schwarz, U.; Rößler, U.K.; Wirth, S.
    A detailed experimental investigation of Fe1+yTe (y = 0.11, 0.12) using pulsed magnetic fields up to 60 T confirms remarkable magnetic shape-memory (MSM) effects. These effects result from magnetoelastic transformation processes in the low-temperature antiferromagnetic state of these materials. The observation of modulated and finely twinned microstructure at the nanoscale through scanning tunneling microscopy establishes a behavior similar to that of thermoelastic martensite. We identified the observed, elegant hierarchical twinning pattern of monoclinic crystallographic domains as an ideal realization of crossing twin bands. The antiferromagnetism of the monoclinic ground state allows for a magnetic-field–induced reorientation of these twin variants by the motion of one type of twin boundaries. At sufficiently high magnetic fields, we observed a second isothermal transformation process with large hysteresis for different directions of applied field. This gives rise to a second MSM effect caused by a phase transition back to the field-polarized tetragonal lattice state.
  • Item
    Single molecule magnet with an unpaired electron trapped between two lanthanide ions inside a fullerene
    (London : Nature Publishing Group, 2017) Liu, F.; Krylov, D.S.; Spree, L.; Avdoshenko, S.M.; Samoylova, N.A.; Rosenkranz, M.; Kostanyan, A.; Greber, T.; Wolter, A.U.B.; Büchner, B.; Popov, A.A.
    Increasing the temperature at which molecules behave as single-molecule magnets is a serious challenge in molecular magnetism. One of the ways to address this problem is to create the molecules with strongly coupled lanthanide ions. In this work, endohedral metallofullerenes Y 2 @C 80 and Dy 2 @C 80 are obtained in the form of air-stable benzyl monoadducts. Both feature an unpaired electron trapped between metal ions, thus forming a single-electron metal-metal bond. Giant exchange interactions between lanthanide ions and the unpaired electron result in single-molecule magnetism of Dy 2 @C 80 (CH 2 Ph) with a record-high 100 s blocking temperature of 18 K. All magnetic moments in Dy 2 @C 80 (CH 2 Ph) are parallel and couple ferromagnetically to form a single spin unit of 21 μ B with a dysprosium-electron exchange constant of 32 cm -1. The barrier of the magnetization reversal of 613 K is assigned to the state in which the spin of one Dy centre is flipped.