Search Results

Now showing 1 - 2 of 2
  • Item
    Generation and characterization of isolated attosecond pulses for coincidence spectroscopy at 100 kHz repetition rate
    (Bristol : IOP Publ., 2020) Witting, T.; Furch, F.; Osolodkov, M.; Schell, F.; Menoni, C.; Schulz, C.P.; Vrakking, M.J.J.
    An attosecond pump-probe beamline with 100 kHz repetition rate for coincidence experiments has been developed. It is based on non-collinear optical parametric chirped pulse ampli-cation and delivers 100 µJ sub-4 fs to an high-harmonic generation source. Details on the generation and characterization of isolated attosecond pulses will be presented. © 2019 Published under licence by IOP Publishing Ltd.
  • Item
    Interference in strong-field ionization of a two-centre atomic system
    (College Park, MD : Institute of Physics Publishing, 2008) Ansari, Z.; Böttcher, M.; Manschwetus, B.; Rottke, H.; Sandner, W.; Verhoef, A.; Lezius, M.; Paulus, G.G.; Saenz, A.; Milošević, D.B.
    Strong-field photoionization of argon dimers by a few-cycle laser pulse is investigated using electron-ion coincidence momentum spectroscopy. The momentum distribution of the photoelectrons exhibits interference due to the emission from the two atomic argon centres, in analogy with a Young's doubleslit experiment. However, a simulation of the dimer photoelectron momentum spectrum based on the atomic spectrum supplemented with a theoretically derived interference term leads to distinct deviations from the experimental result. The deviations may have their origin in a complex electron dynamics during strong-field ionization of the Ar2 dimer. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.