Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Metallofullerene photoswitches driven by photoinduced fullerene-to-metal electron transfer

2021, Zalibera, Michal, Ziegs, Frank, Schiemenz, Sandra, Dubrovin, Vasilii, Lubitz, Wolfgang, Savitsky, Anton, Deng, Shihu H.M., Wang, Xue-Bin, Advoshenko, Stanislav M., Popov, Alexey A.

We report on the discovery and detailed exploration of the unconventional photo-switching mechanism in metallofullerenes, in which the energy of the photon absorbed by the carbon cage π-system is transformed to mechanical motion of the endohedral cluster accompanied by accumulation of spin density on the metal atoms. Comprehensive photophysical and electron paramagnetic resonance (EPR) studies augmented by theoretical modelling are performed to address the phenomenon of the light-induced photo-switching and triplet state spin dynamics in a series of YxSc3−xN@C80 (x = 0–3) nitride clusterfullerenes. Variable temperature and time-resolved photoluminescence studies revealed a strong dependence of their photophysical properties on the number of Sc atoms in the cluster. All molecules in the series exhibit temperature-dependent luminescence assigned to the near-infrared thermally-activated delayed fluorescence (TADF) and phosphorescence. The emission wavelengths and Stokes shift increase systematically with the number of Sc atoms in the endohedral cluster, whereas the triplet state lifetime and S1–T1 gap decrease in this row. For Sc3N@C80, we also applied photoelectron spectroscopy to obtain the triplet state energy as well as the electron affinity. Spin distribution and dynamics in the triplet states are then studied by light-induced pulsed EPR and ENDOR spectroscopies. The spin–lattice relaxation times and triplet state lifetimes are determined from the temporal evolution of the electron spin echo after the laser pulse. Well resolved ENDOR spectra of triplets with a rich structure caused by the hyperfine and quadrupolar interactions with 14N, 45Sc, and 89Y nuclear spins are obtained. The systematic increase of the metal contribution to the triplet spin density from Y3N to Sc3N found in the ENDOR study points to a substantial fullerene-to-metal charge transfer in the excited state. These experimental results are rationalized with the help of ground-state and time-dependent DFT calculations, which revealed a substantial variation of the endohedral cluster position in the photoexcited states driven by the predisposition of Sc atoms to maximize their spin population.

Loading...
Thumbnail Image
Item

Evidence of the Anomalous Fluctuating Magnetic State by Pressure-Driven 4f Valence Change in EuNiGe3

2023, Chen, K., Luo, C., Zhao, Y., Baudelet, F., Maurya, A., Thamizhavel, A., Rößler, U. K., Makarov, D., Radu, F.

In rare-earth compounds with valence fluctuation, the proximity of the 4f level to the Fermi energy leads to instabilities of the charge configuration and the magnetic moment. Here, we provide direct experimental evidence for an induced magnetic polarization of the Eu3+ atomic shell with J = 0, due to intra-atomic exchange and spin-orbital coupling interactions with the Eu2+ atomic shell. By applying external pressure, a transition from antiferromagnetic to a fluctuating behavior in EuNiGe3 single crystals is probed. Magnetic polarization is observed for both valence states of Eu2+ and Eu3+ across the entire pressure range. The anomalous magnetism is discussed in terms of a homogeneous intermediate valence state where frustrated Dzyaloshinskii-Moriya couplings are enhanced by the onset of spin-orbital interaction and engender a chiral spin-liquid-like precursor.

Loading...
Thumbnail Image
Item

Self-assembly of endohedral metallofullerenes: A decisive role of cooling gas and metal-carbon bonding

2016, Deng, Qingming, Heine, Thomas, Irle, Stephan, Popov, Alexey A.

The endohedral metallofullerene (EMF) self-assembly process in Sc/carbon vapor in the presence and absence of an inert cooling gas (helium) is systematically investigated using quantum chemical molecular dynamics simulations. It is revealed that the presence of He atoms accelerates the formation of pentagons and hexagons and reduces the size of the self-assembled carbon cages in comparison with analogous He-free simulations. As a result, the Sc/C/He system simulations produce a larger number of successful trajectories (i.e. leading to Sc-EMFs) with more realistic cage-size distribution than simulations of the Sc/C system. The main Sc encapsulation mechanism involves nucleation of several hexagons and pentagons with Sc atoms already at the early stages of carbon vapor condensation. In such proto-cages, both Sc–C σ-bonds and coordination bonds between Sc atoms and the π-system of the carbon network are present. Sc atoms are thus rather labile and can move along the carbon network, but the overall bonding is sufficiently strong to prevent dissociation even at temperatures around 2000 kelvin. Further growth of the fullerene cage results in the encapsulation of one or two Sc atoms within the fullerene. In agreement with experimental studies, an extension of the simulations to Fe and Ti as the metal component showed that Fe-EMFs are not formed at all, whereas Ti is prone to form Ti-EMFs with small cage sizes, including Ti@C28-Td and Ti@C30-C2v(3).

Loading...
Thumbnail Image
Item

Influence of 4f filling on electronic and magnetic properties of rare earth-Au surface compounds

2020, Fernandez, L., Blanco-Rey, M., Castrillo-Bodero, R., Ilyn, M., Ali, K., Turco, E., Corso, M., Ormaza, M., Gargiani, P., Valbuena, M.A., Mugarza, A., Moras, P., Sheverdyaeva, P.M., Kundu, Asish K., Jugovac, M., Laubschat, C., Ortega, J.E., Schiller, F.

One-atom-thick rare-earth/noble metal (RE-NM) compounds are attractive materials to investigate two-dimensional magnetism, since they are easy to synthesize into a common RE-NM2 structure with high crystal perfection. Here we perform a comparative study of the GdAu2, HoAu2, and YbAu2 monolayer compounds grown on Au(111). We find the same atomic lattice quality and moiré superlattice periodicity in the three cases, but different electronic properties and magnetism. The YbAu2 monolayer reveals the characteristic electronic signatures of a mixed-valence configuration in the Yb atom. In contrast, GdAu2 and HoAu2 show the trivalent character of the rare-earth and ferromagnetic transitions below 22 K. Yet, the GdAu2 monolayer has an in-plane magnetic easy-axis, versus the out-of-plane one in HoAu2. The electronic bands of the two trivalent compounds are very similar, while the divalent YbAu2 monolayer exhibits different band features. In the latter, a strong 4f-5d hybridization is manifested in neatly resolved avoided crossings near the Fermi level. First principles theory points to a residual presence of empty 4f states, explaining the fluctuating valence of Yb in the YbAu2 monolayer. © The Royal Society of Chemistry.