Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Autofluorescent granules of the human retinal pigment epithelium: phenotypes, intracellular distribution, and age-related topography

2020, Bermond, Katharina, Wobbe, Christina, Tarau, Ioana-Sandra, Heintzmann, Rainer, Hillenkamp, Jost, Curcio, Christine A., Sloan, Kenneth R., Ach, Thomas

PURPOSE. The human retinal pigment epithelium (RPE) accumulates granules significant for autofluorescence imaging. Knowledge of intracellular accumulation and distribution is limited. Using high-resolution microscopy techniques, we determined the total number of granules per cell, intracellular distribution, and changes related to retinal topography and age. METHODS. RPE cells from the fovea, perifovea, and near-periphery of 15 human RPE flat mounts were imaged using structured illumination microscopy (SIM) and confocal fluorescence microscopy in young (=51 years, n = 8) and older (>80 years, n = 7) donors. Using custom FIJI plugins, granules were marked with computer assistance, classified based on morphological and autofluorescence properties, and analyzed with regard to intracellular distribution, total number per cell, and granule density. RESULTS. A total of 193,096 granules in 450 RPE cell bodies were analyzed. Based on autofluorescence properties, size, and composition, the RPE granules exhibited nine different phenotypes (lipofuscin, two; melanolipofuscin, five; melanosomes, two), distinguishable by SIM. Overall, lipofuscin (low at the fovea but increases with eccentricity and age) and melanolipofuscin (equally distributed at all three locations with no age-related changes) were the major granule types. Melanosomes were under-represented due to suboptimal visualization of apical processes in flat mounts. CONCLUSIONS. Low lipofuscin and high melanolipofuscin content within foveal RPE cell bodies and abundant lipofuscin at the perifovea suggest a different genesis, plausibly related to the population of overlying photoreceptors (fovea, cones only; perifovea, highest rod density). This systematic analysis provides further insight into RPE cell and granule physiology and links granule load to cell autofluorescence, providing a subcellular basis for the interpretation of clinical fundus autofluorescence. © 2020 Association for Research in Vision and Ophthalmology Inc.. All rights reserved.

Loading...
Thumbnail Image
Item

Wide Field Spectral Imaging with Shifted Excitation Raman Difference Spectroscopy Using the Nod and Shuffle Technique

2020, Korinth, Florian, Schmälzlin, Elmar, Stiebing, Clara, Urrutia, Tanya, Micheva, Genoveva, Sandin, Christer, Müller, André, Maiwald, Martin, Sumpf, Bernd, Krafft, Christoph, Tränkle, Günther, Roth, Martin M, Popp, Jürgen

Wide field Raman imaging using the integral field spectroscopy approach was used as a fast, one shot imaging method for the simultaneous collection of all spectra composing a Raman image. For the suppression of autofluorescence and background signals such as room light, shifted excitation Raman difference spectroscopy (SERDS) was applied to remove background artifacts in Raman spectra. To reduce acquisition times in wide field SERDS imaging, we adapted the nod and shuffle technique from astrophysics and implemented it into a wide field SERDS imaging setup. In our adapted version, the nod corresponds to the change in excitation wavelength, whereas the shuffle corresponds to the shifting of charges up and down on a Charge-Coupled Device (CCD) chip synchronous to the change in excitation wavelength. We coupled this improved wide field SERDS imaging setup to diode lasers with 784.4/785.5 and 457.7/458.9 nm excitation and applied it to samples such as paracetamol and aspirin tablets, polystyrene and polymethyl methacrylate beads, as well as pork meat using multiple accumulations with acquisition times in the range of 50 to 200 ms. The results tackle two main challenges of SERDS imaging: gradual photobleaching changes the autofluorescence background, and multiple readouts of CCD detector prolong the acquisition time.