Search Results

Now showing 1 - 2 of 2
  • Item
    Preparation and cycling performance of iron or iron oxide containing amorphous Al-Li alloys as electrodes
    (Basel : MDPI AG, 2014) Thoss, F.; Giebeler, L.; Weißer, K.; Feller, J.; Eckert, J.
    Crystalline phase transitions cause volume changes, which entails a fast destroying of the electrode. Non-crystalline states may avoid this circumstance. Herein we present structural and electrochemical investigations of pre-lithiated, amorphous Al39Li43Fe13Si5-powders, to be used as electrode material for Li-ion batteries. Powders of master alloys with the compositions Al39Li43Fe13Si5 and Al39Li43Fe13Si5 + 5 mass-% FeO were prepared via ball milling and achieved amorphous/nanocrystalline states after 56 and 21.6 h, respectively. In contrast to their Li-free amorphous pendant Al78Fe13Si9, both powders showed specific capacities of about 400 and 700 Ah/kgAl, respectively, after the third cycle.
  • Item
    Microstructure and Mechanical Behavior of Al-Mg Composites Synthesized by Reactive Sintering
    (Basel : MDPI, 2018-9-25) Shahid, Rub Nawaz; Scudino, Sergio
    Lightweight metal matrix composites are synthesized from elemental powder mixtures of aluminum and magnesium using pressure-assisted reactive sintering. The effect of the reaction between aluminum and magnesium on the microstructure and mechanical properties of the composites due to the formation of β-Al3Mg2 and γ-Al12Mg17 intermetallics is investigated. The formation of the intermetallic compounds progressively consumes aluminum and magnesium and induces strengthening of the composites: the yield and compressive strengths increase with the increase of the content of intermetallic reinforcement at the expense of the plastic deformation. The yield strength of the composites follows the iso-stress model when the data are plotted as a function of the intermetallic content.