Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Extremely large magnetoresistance from electron-hole compensation in the nodal-loop semimetal ZrP2

2021, Bannies, J., Razzoli, E., Michiardi, M., Kung, H.-H., Elfimov, I.S., Yao, M., Fedorov, A., Fink, J., Jozwiak, C., Bostwick, A., Rotenberg, E., Damascelli, A., Felser, C.

Several early transition metal dipnictides (TMDPs) have been found to host topological semimetal states and exhibit large magnetoresistance (MR). In this paper, we use angle-resolved photoemission spectroscopy (ARPES) and magnetotransport to study the electronic properties of a TMDP ZrP2. We find that ZrP2 exhibits an extremely large and unsaturated MR of up to 40 000% at 2 K, which originates from an almost perfect electron-hole (e-h) compensation. Our band structure calculations further show that ZrP2 hosts a topological nodal loop in proximity to the Fermi level. Based on the ARPES measurements, we confirm the results of our calculations and determine the surface band structure. This paper establishes ZrP2 as a platform to investigate near-perfect e-h compensation and its interplay with topological band structures.

Loading...
Thumbnail Image
Item

Effect of uniaxial stress on the electronic band structure of NbP

2020, Schindler, Clemens, Noky, Jonathan, Schmidt, Marcus, Felser, Claudia, Wosnitza, Jochen, Gooth, Johannes

The Weyl semimetal NbP exhibits a very small Fermi surface consisting of two electron and two hole pockets, whose fourfold degeneracy in k space is tied to the rotational symmetry of the underlying tetragonal crystal lattice. By applying uniaxial stress, the crystal symmetry can be reduced, which successively leads to a degeneracy lifting of the Fermi-surface pockets. This is reflected by a splitting of the Shubnikov-de Haas frequencies when the magnetic field is aligned along the c axis of the tetragonal lattice. In this study, we present the measurement of Shubnikov-de Haas oscillations of single-crystalline NbP samples under uniaxial tension, combined with state-of-the-art calculations of the electronic band structure. Our results show qualitative agreement between calculated and experimentally determined Shubnikov-de Haas frequencies, demonstrating the robustness of the band-structure calculations upon introducing strain. Furthermore, we predict a significant shift of the Weyl points with increasing uniaxial tension, allowing for an effective tuning to the Fermi level at only 0.8% of strain along the a axis. © 2020 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the "https://creativecommons.org/licenses/by/4.0/"Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Open access publication funded by the Max Planck Society.

Loading...
Thumbnail Image
Item

Spin Hall effect emerging from a noncollinear magnetic lattice without spin-orbit coupling

2018, Zhang, Y., Železný, J., Sun, Y., Van Den Brink, J., Yan, B.

The spin Hall effect (SHE), which converts a charge current into a transverse spin current, has long been believed to be a phenomenon induced by spin-orbit coupling. Here, we identify an alternative mechanism to realize the intrinsic SHE through a noncollinear magnetic structure that breaks the spin rotation symmetry. No spin-orbit coupling is needed even when the scalar spin chirality vanishes, different from the case of the topological Hall effect and topological SHE reported previously. In known noncollinear antiferromagnetic compounds Mn3X (X = Ga, Ge, and Sn), for example, we indeed obtain large spin Hall conductivities based on ab initio calculations.

Loading...
Thumbnail Image
Item

Magnetic-field- and temperature-dependent fermi surface of CeBiPt

2006, Wosnitza, J., Goll, G., Bianchi, A.D., Bergk, B., Kozlova, N., Opahle, I., Elgazzar, S., Richter, Manuel, Stockert, O., Löhneysen, H.V., Yoshino, T., Takabatake, T.

The half-Heusler compounds CeBiPt and LaBiPt are semimetals with very low charge-carrier concentrations as evidenced by Shubnikov–de Haas (SdH) and Hall-effect measurements. Neutron-scattering results reveal a simple antiferromagnetic structure in CeBiPt below TN = 1.15 K. The band structure of CeBiPt sensitively depends on temperature, magnetic field and stoichiometry. Above a certain, sample-dependent, threshold field (B>25 T), the SdH signal disappears and the Hall coefficient reduces significantly. These effects are absent in the non-4f compound LaBiPt. Electronic-band-structure calculations can well explain the observed behaviour by a 4f-polarization-induced Fermi-surface modification.