Search Results

Now showing 1 - 2 of 2
  • Item
    Increased biocompatibility and bioactivity after energetic PVD surface treatments
    (Basel : MDPI, 2009) Mändl, S.
    Ion implantation, a common technology in semiconductor processing, has been applied to biomaterials since the 1960s. Using energetic ion bombardment, a general term which includes conventional ion implantation plasma immersion ion implantation (PIII) and ion beam assisted thin film deposition, functionalization of surfaces is possible. By varying and adjusting the process parameters, several surface properties can be attuned simultaneously. Extensive research details improvements in the biocompatibility, mainly by reducing corrosion rates and increasing wear resistance after surface modification. Recently, enhanced bioactivity strongly correlated with the surface topography and less with the surface chemistry has been reported, with an increased roughness on the nanometer scale induced by self-organisation processes during ion bombardment leading to faster cellular adhesion processes. © 2009 by the authors;.
  • Item
    Structural defects in Fe-Pd-based ferromagnetic shape memory alloys: Tuning transformation properties by ion irradiation and severe plastic deformation
    (Bristol : IOP, 2012) Mayr, S.G.; Arabi-Hashemi, A.
    Fe-Pd-based ferromagnetic shape memory alloys constitute an exciting class of magnetically switchable smart materials that reveal excellent mechanical properties and biocompatibility. However, their application is severely hampered by a lack of understanding of the physics at the atomic scale. A many-body potential is presented that matched ab inito calculations and can account for the energetics of martensite ↔ austenite transition along the Bain path and relative phase stabilities in the ordered and disordered phases of Fe-Pd. Employed in massively parallel classical molecular dynamics simulations, the impact of order/disorder, point defects and severe plastic deformation in the presence of single- and polycrystalline microstructures are explored as a function of temperature. The model predictions are in agreement with experiments on phase changes induced by ion irradiation, cold rolling and hammering, which are also presented.