Search Results

Now showing 1 - 3 of 3
  • Item
    Potential effects of climate change on inundation patterns in the Amazon Basin
    (Chichester : John Wiley and Sons Ltd, 2013) Langerwisch, F.; Rost, S.; Gerten, D.; Poulter, B.; Rammig, A.; Cramer, W.
    Floodplain forests, namely the Várzea and Igapó, cover an area of more than 97 000 km2. A key factor for their function and diversity is annual flooding. Increasing air temperature and higher precipitation variability caused by climate change are expected to shift the flooding regime during this century, and thereby impact floodplain ecosystems, their biodiversity and riverine ecosystem services. To assess the effects of climate change on the flooding regime, we use the Dynamic Global Vegetation and Hydrology Model LPJmL, enhanced by a scheme that realistically simulates monthly flooded area. Simulation results of discharge and inundation under contemporary conditions compare well against site-level measurements and observations. The changes of calculated inundation duration and area under climate change projections from 24 IPCC AR4 climate models differ regionally towards the end of the 21st century. In all, 70% of the 24 climate projections agree on an increase of flooded area in about one third of the basin. Inundation duration increases dramatically by on average three months in western and around one month in eastern Amazonia. The time of high- and low-water peak shifts by up to three months. Additionally, we find a decrease in the number of extremely dry years and in the probability of the occurrence of three consecutive extremely dry years. The total number of extremely wet years does not change drastically but the probability of three consecutive extremely wet years decreases by up to 30% in the east and increases by up to 25% in the west. These changes implicate significant shifts in regional vegetation and climate, and will dramatically alter carbon and water cycles.
  • Item
    The LEGATO cross-disciplinary integrated ecosystem service research framework: an example of integrating research results from the analysis of global change impacts and the social, cultural and economic system dynamics of irrigated rice production
    (Heidelberg : Springer Verlag, 2017) Spangenberg, J.H.; Beaurepaire, A.L.; Bergmeier, E.; Burkhard, B.; van Chien, H.; Cuong, L.Q.; Görg, C.; Grescho, V.; Hai, L.H.; Heong, K.L.; Horgan, F.G.; Hotes, S.; Klotzbücher, A.; Klotzbücher, T.; Kühn, I.; Langerwisch, F.; Marion, G.; Moritz, R.F.A.; Nguyen, Q.A.; Ott, J.; Sann, C.; Sattler, C.; Schädler, M.; Schmidt, A.; Tekken, V.; Thanh, T.D.; Thonicke, K.; Türke, M.; Václavík, T.; Vetterlein, D.; Westphal, C.; Wiemers, M.; Settele, J.
    In a cross-disciplinary project (LEGATO) combining inter- and transdisciplinary methods, we quantify the dependency of rice-dominated socio-ecological systems on ecosystem functions (ESF) and the ecosystem services (ESS) the integrated system provides. In the collaboration of a large team including geo- and bioscientists, economists, political and cultural scientists, the mutual influences of the biological, climate and soil conditions of the agricultural area and its surrounding natural landscape have been analysed. One focus was on sociocultural and economic backgrounds, another on local as well as regional land use intensity and biodiversity, and the potential impacts of future climate and land use change. LEGATO analysed characteristic elements of three service strands defined by the Millennium Ecosystem Assessment (MA): (a) provisioning services: nutrient cycling and crop production; (b) regulating services: biocontrol and pollination; and (c) cultural services: cultural identity and aesthetics. However, in line with much of the current ESS literature, what the MA called supporting services is treated as ESF within LEGATO. As a core output, LEGATO developed generally applicable principles of ecological engineering (EE), suitable for application in the context of future climate and land use change. EE is an emerging discipline, concerned with the design, monitoring and construction of ecosystems and aims at developing strategies to optimise ecosystem services through exploiting natural regulation mechanisms instead of suppressing them. Along these lines LEGATO also aims to create the knowledge base for decision-making for sustainable land management and livelihoods, including the provision of the corresponding governance and management strategies, technologies and system solutions.