Search Results

Now showing 1 - 2 of 2
  • Item
    Silica nanoparticles for intracellular protein delivery: A novel synthesis approach using green fluorescent protein
    (London : BioMed Central, 2017) Schmidt, Sarah; Tavernaro, Isabella; Cavelius, Christian; Weber, Eva; Kümper, Alexander; Schmitz, Carmen; Fleddermann, Jana; Kraegeloh, Annette
    In this study, a novel approach for preparation of green fluorescent protein (GFP)-doped silica nanoparticles with a narrow size distribution is presented. GFP was chosen as a model protein due to its autofluorescence. Protein-doped nanoparticles have a high application potential in the field of intracellular protein delivery. In addition, fluorescently labelled particles can be used for bioimaging. The size of these protein-doped nanoparticles was adjusted from 15 to 35 nm using a multistep synthesis process, comprising the particle core synthesis followed by shell regrowth steps. GFP was selectively incorporated into the silica matrix of either the core or the shell or both by a one-pot reaction. The obtained nanoparticles were characterised by determination of particle size, hydrodynamic diameter, ζ-potential, fluorescence and quantum yield. The measurements showed that the fluorescence of GFP was maintained during particle synthesis. Cellular uptake experiments demonstrated that the GFP-doped nanoparticles can be used as stable and effective fluorescent probes. The study reveals the potential of the chosen approach for incorporation of functional biological macromolecules into silica nanoparticles, which opens novel application fields like intracellular protein delivery.
  • Item
    On the possibility of PhotoEmission Electron Microscopy for E. coli advanced studies
    (Amsterdam [u.a.] : Elsevier, 2020) Turishchev, S.Yu.; Marchenko, D.; Sivakov, V.; Belikov, E.A.; Chuvenkova, O.A.; Parinova, E.V.; Koyuda, D.A.; Chumakov, R.G.; Lebedev, A.M.; Kulikova, T.V.; Berezhnoy, A.A.; Valiakhmedova, I.V.; Praslova, N.V.; Preobrazhenskaya, E.V.; Antipov, S.S.
    The novel approach was proposed for detailed high-resolution studies of morphology and physico-chemical properties concomitantly at one measurement spot of E. coli bacterial cells culture immobilized onto silicon wafer surface in UHV conditions applying PhotoEmission Electron Microscopy under Hg lamp irradiation. For the E. coli characterization scanning electron microscopy (electron beam) and X-ray photoelectron spectroscopy (X-ray tube radiation) were applied prior to PhotoEmission Electron Microscopy measurements. In spite of irradiation doses collected for the cell arrays we were successful in detection of high-resolution images even of single E. coli bacterium by PhotoEmission Electron Microscopy technique followed by detailed high-resolution morphology studies by scanning electron microscopy. These results revealed widespread stability of the E. coli membranes shape after the significant number of applied characterization techniques. © 2019 The Authors