Search Results

Now showing 1 - 2 of 2
  • Item
    Roll-to-roll manufacturing of micropatterned adhesives by template compression
    (Basel : MDPI, 2018) Yu, D.; Beckelmann, D.; Opsölder, M.; Schäfer, B.; Moh, K.; Hensel, R.; de, Oliveira, P.; Arzt, E.
    For the next generation of handling systems, reversible adhesion enabled by micropatterned dry adhesives exhibits high potential. The versatility of polymeric micropatterns in handling objects made from various materials has been demonstrated by several groups. However, specimens reported in most studies have been restricted to the laboratory scale. Upscaling the size and quantity of micropatterned adhesives is the next step to enable successful technology transfer. Towards this aim, we introduce a continuous roll-to-roll replication process for fabrication of high-performance, mushroom-shaped micropatterned dry adhesives. The micropatterns were made from UV-curable polyurethane acrylates. To ensure the integrity of the complex structure during the fabrication process, flexible templates were used. The compression between the template and the wet prepolymer coating was investigated to optimize replication results without structural failures, and hence, to improve adhesion. As a result, we obtained micropatterned adhesive tapes, 10 cm in width and several meters in length, with adhesion strength about 250 kPa to glass, suitable for a wide range of applications. © 2018 by the authors.
  • Item
    Water as a "glue" : Elasticity-enhanced wet attachment of biomimetic microcup structures
    (Washington, DC [u.a.] : Assoc., 2022) Wang, Yue; Li, Zhengwei; Elhebeary, Mohamed; Hensel, René; Arzt, Eduard; Saif, M. Taher A.
    Octopus, clingfish, and larva use soft cups to attach to surfaces under water. Recently, various bioinspired cups have been engineered. However, the mechanisms of their attachment and detachment remain elusive. Using a novel microcup, fabricated by two-photon lithography, coupled with in situ pressure sensor and observation cameras, we reveal the detailed nature of its attachment/detachment under water. It involves elasticity-enhanced hydrodynamics generating “self-sealing” and high suction at the cup-substrate interface, converting water into “glue.” Detachment is mediated by seal breaking. Three distinct mechanisms of breaking are identified, including elastic buckling of the cup rim. A mathematical model describes the interplay between the attachment/detachment process, geometry, elasto-hydrodynamics, and cup retraction speed. If the speed is too slow, then the octopus cannot attach; if the tide is too gentle for the larva, then water cannot serve as a glue. The concept of “water glue” can innovate underwater transport and manufacturing strategies.