Search Results

Now showing 1 - 2 of 2
  • Item
    Zwitterionic and biradicaloid heteroatomic cyclopentane derivatives containing different group 15 elements
    (Cambridge : RSC, 2015) Hinz, Alexander; Schulz, Axel; Villinger, Alexander
    The formal cyclopentane-1,3-diyl derivatives [E1(μ-NTer)2({E2C} = NDmp)] (Ter = 2,6-dimesityl-phenyl, Dmp = 2,6-dimethylphenyl) were prepared by 1,1-insertion of CNDmp into the N–E2 bond of [E1(μ-NTer)2E2] (E1 = N, P; E2 = P, As). The insertion does not occur for E1 = E2 = As or E2 = Sb. Dependent on the choice of formal radical centres E, either a biradicaloid or a zwitterion was obtained. The biradicaloid features a P and an As radical center and its biradical character was established by computations as well as characteristic reactivity with respect to the formation of a housane derivative and the activation of molecules bearing multiple bonds, which was demonstrated using the example of PCtBu. In contrast, the formally N,As- and N,P-centered biradicaloids are better regarded as zwitterionic species in accord with computations and diminished reactivity, as neither housane formation nor activation of multiple bonds could be observed.
  • Item
    Cycloaddition of Alkenes and Alkynes to the P-centered Singlet Biradical [P(μ-NTer)]2
    (Weinheim : Wiley-VCH, 2020) Chojetzki, Lukas; Schulz, Axel; Villinger, Alexander; Wustrack, Ronald
    The reaction of biradical [P(μ-NTer)]2 (1, Ter = 2,6-bis(2,4,6-trimethylphenyl)phenyl) towards different alkenes (R = 2,3-dimethyl–butadiene, 2,5-dimethyl-2,4-hexadiene, 1,7-octadiene, 1,4-cyclohexadiene) and alkynes (R = 1,4-diphenyl-1,3-butadiyne) was studied experimentally. Although these olefins can react in different ways, only [2+2] cycloaddition products (1R) were observed. The reaction with 2,3-dimethylbutadiene also led to the [2+2] product (1dmb). Thermal treatment of 1dmb above 140 °C resulted in the recovery of biradical 1 upon homolytic bond cleavage of the two P–C bonds and the release of 2,3-dimethylbutadiene. In contrast to this reaction, all other [2+2] additions products (1R, R = 1,7-octadiene, 1,4-cyclohexadiene, 1,4-diphenyl-1,3-butadiyne) began to decompose at temperatures between 200 °C and 300 °C. Only unidentified products were obtained but no temperature-controlled equilibrium reactions were observed. Computations were carried out to shed light into the formal [2+2] as well as the possible [4+2] addition reaction.