Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Transmitters and receivers in SiGe BiCMOS technology for sensitive gas spectroscopy at 222 - 270 GHz

2019, Schmalz, K., Rothbart, N., Eissa, M.H., Borngräber, J., Kissinger, D., Hübers, H.-W.

This paper presents transmitter and receiver components for a gas spectroscopy system. The components are fabricated in IHP's 0.13 μm SiGe BiCMOS technology. Two fractional-N phase-locked loops are used to generate dedicated frequency ramps for the transmitter and receiver and frequency shift keying for the transmitter. The signal-to-noise ratio (SNR) for the absorption line of gaseous methanol (CH 3 OH) at 247.6 GHz is used as measure for the performance of the system. The implemented mixer-first receiver allows a high performance of the system due to its linearity up to an input power of -10 dBm. Using a transmitter-array with an output power of 7 dBm an SNR of 4660 (integration time of 2 ms for each data point) was obtained for the 247.6 GHz absorption line of CH 3 OH at 5 Pa. We have extended our single frequency-band system for 228 - 252 GHz to a 2-band system to cover the range 222 - 270 GHz by combining corresponding two transmitters and receivers with the frequency bands 222 - 256 GHz and 250 - 270 GHz on single transmitter- and receiver-chips. This 2-band operation allows a parallel spectra acquisition and therefore a high flexibility of data acquisition for the two frequency-bands. The 50 GHz bandwidth allows for highly specific and selective gas sensing. © 2019 Author(s).

Loading...
Thumbnail Image
Item

Conversion of p–n conduction type by spinodal decomposition in Zn-Sb-Bi phase-change alloys

2020, Wang, Guoxiang, Shi, Haizhou, Lotnyk, Andriy, Shi, Daotian, Wang, Rongping

Phase-change films with multiple resistance levels are promising for increasing the storage density in phase-change memory technology. Diffusion-dominated Zn2Sb3 films undergo transitions across three states, from high through intermediate to low resistance, upon annealing. The properties of the Zn2Sb3 material can be further optimized by doping with Bi. Based on scanning transmission electron microscopy combined with electrical transport measurements, at a particular Bi concentration, the conduction of Zn-Sb-Bi compounds changes from p- to n-type, originating from spinodal decomposition. Simultaneously, the change in the temperature coefficient of resistivity shows a metal-to-insulator transition. Further analysis of microstructure characteristics reveals that the distribution of the Bi-Sb phase may be the origin of the driving force for the p–n conduction and metal-to-insulator transitions and therefore may provide us with another way to improve multilevel data storage. Moreover, the Bi doping promotes the thermoelectric properties of the studied alloys, leading to higher values of the power factor compared to known reported structures. The present study sheds valuable light on the spinodal decomposition process caused by Bi doping, which can also occur in a wide variety of chalcogenide-based phase-change materials. In addition, the study provides a new strategy for realizing novel p–n heterostructures for multilevel data storage and thermoelectric applications.