Search Results

Now showing 1 - 3 of 3
  • Item
    Long-time resistivity monitoring of a freshwater/saltwater transition zone using the vertical electrode system SAMOS
    (Les Ulis : EDP Sciences, 2018) Grinat, Michael; Epping, Dieter; Meyer, Robert; Szymkiewicz, Adam; Sadurski, A.; Jaworska-Szulc, B.
    In September 2009 two newly developed vertical electrode systems were installed in boreholes in the water catchment areas Waterdelle and Ostland at the North Sea island Borkum to monitor possible changes of the transition zone between the freshwater lens and the underlying saltwater. The vertical electrode systems, which were both installed between 44 m and 65 m below ground level, are used for geoelectrical multi-electrode measurements carried out automatically several times per day; the measurements are still ongoing. The whole system consisting of a vertical electrode system in a borehole and the measuring unit at ground level is called SAMOS (Saltwater Monitoring System). At both locations the data show a clear resistivity decrease that indicates the transition zone between freshwater and saltwater. The depth of the transition zone as well as the kind of resistivity decrease is very stable since 2010. Temporal changes are visible if single depths are considered. In 2015 Miriam Ibenthal used a vertical 2D density-dependent groundwater flow model to explain the long-term resistivity measurements and showed that the temporal changes at CLIWAT 2 (Ostland) could be explained by variations of the groundwater level, changing groundwater recharge rates and changing pumping rates of the nearby located drinking water supply wells.
  • Item
    Numerical modelling of climate change impacts on freshwater lenses on the North Sea Island of Borkum using hydrological and geophysical methods
    (Munich : EGU, 2012) Sulzbacher, H.; Wiederhold, H.; Siemon, B.; Grinat, M.; Igel, J.; Burschil, T.; Günther, T.; Hinsby, K.
    A numerical, density dependent groundwater model is set up for the North Sea Island of Borkum to estimate climate change impacts on coastal aquifers and especially the situation of barrier islands in the Wadden Sea. The database includes information from boreholes, a seismic survey, a helicopter-borne electromagnetic (HEM) survey, monitoring of the freshwater-saltwater boundary by vertical electrode chains in two boreholes, measurements of groundwater table, pumping and slug tests, as well as water samples. Based on a statistical analysis of borehole columns, seismic sections and HEM, a hydrogeological model is set up. The groundwater model is developed using the finite-element programme FEFLOW. The density dependent groundwater model is calibrated on the basis of hydraulic, hydrological and geophysical data, in particular spatial HEM and local monitoring data. Verification runs with the calibrated model show good agreement between measured and computed hydraulic heads. A good agreement is also obtained between measured and computed density or total dissolved solids data for both the entire freshwater lens on a large scale and in the area of the well fields on a small scale. For simulating future changes in this coastal groundwater system until the end of the current century, we use the climate scenario A2, specified by the Intergovernmental Panel on Climate Change and, in particular, the data for the German North Sea coast. Simulation runs show proceeding salinisation with time beneath the well fields of the two waterworks Waterdelle and Ostland. The modelling study shows that the spreading of well fields is an appropriate protection measure against excessive salinisation of the water supply until the end of the current century.
  • Item
    Finite-difference modelling to evaluate seismic P-wave and shear-wave field data
    (Göttingen : Copernicus Publ., 2015) Burschil, T.; Beilecke, T.; Krawczyk, C.M.
    High-resolution reflection seismic methods are an established non-destructive tool for engineering tasks. In the near surface, shear-wave reflection seismic measurements usually offer a higher spatial resolution in the same effective signal frequency spectrum than P-wave data, but data quality varies more strongly. To discuss the causes of these differences, we investigated a P-wave and a SH-wave seismic reflection profile measured at the same location on the island of Föhr, Germany and applied seismic reflection processing to the field data as well as finite-difference modelling of the seismic wave field. The simulations calculated were adapted to the acquisition field geometry, comprising 2 m receiver distance (1 m for SH wave) and 4 m shot distance along the 1.5 km long P-wave and 800 m long SH-wave profiles. A Ricker wavelet and the use of absorbing frames were first-order model parameters. The petrophysical parameters to populate the structural models down to 400 m depth were taken from borehole data, VSP (vertical seismic profile) measurements and cross-plot relations. The simulation of the P-wave wave-field was based on interpretation of the P-wave depth section that included a priori information from boreholes and airborne electromagnetics. Velocities for 14 layers in the model were derived from the analysis of five nearby VSPs (vP =1600–2300 m s-1). Synthetic shot data were compared with the field data and seismic sections were created. Major features like direct wave and reflections are imaged. We reproduce the mayor reflectors in the depth section of the field data, e.g. a prominent till layer and several deep reflectors. The SH-wave model was adapted accordingly but only led to minor correlation with the field data and produced a higher signal-to-noise ratio. Therefore, we suggest to consider for future simulations additional features like intrinsic damping, thin layering, or a near-surface weathering layer. These may lead to a better understanding of key parameters determining the data quality of near-surface shear-wave seismic measurements.