Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Spatially modulated broad-area lasers for narrow lateral far-field divergence

2021, Zeghuzi, Anissa, Koester, Jan-Philipp, Radziunas, Mindaugas, Christopher, Heike, Wenzel, Hans, Knigge, Andrea

A novel laser design is presented that combines a longitudinal-lateral gain-loss modulation with an additional phase tailoring achieved by etching rectangular trenches. At 100 A pulsed operation, simulations predict a far-field profile with 0.3° full width at half maximum (ΘFWHM=0.3∘) where a 0.4°-wide main lobe contains 40% of the emitted optical output power (Θ40%=0.4∘). While far-field measurements of these structured lasers emitting 10 ns long pulses with 35 W peak power confirm a substantial enhancement of radiation within the central 1∘ angular range, the measured far-field intensity outside of the obtained central peak remains high.

Loading...
Thumbnail Image
Item

60% Efficient Monolithically Wavelength-Stabilized 970-nm DBR Broad-Area Lasers

2022, Crump, Paul, Miah, M. Jarez, Wilkens, Martin, Fricke, Jorg, Wenzel, Hans, Knigge, Andrea

Progress in epitaxial design is shown to enable increased optical output power P opt and power conversion efficiency η E and decreased lateral far-field divergence angle in GaAs-based distributed Bragg reflector (DBR) broad-area (BA) diode lasers. We show that the wavelength-locked power can be significantly increased (saturation at high bias current is mitigated) by migrating from an asymmetric large optical cavity (ASLOC) based laser structure to a highly asymmetric (extreme-triple-asymmetric (ETAS)) layer design. For wavelength-stabilization, 7 th order, monolithic DBRs are etched on the surface of fully grown epitaxial layer structures. The investigated ETAS reference Fabry-Pérot (FP) BA lasers without DBRs and with 200 µm stripe width and 4 mm cavity length provide P opt = 29 W (still increasing) at 30 A in continuous-wave mode at room temperature, in contrast to the maximum P opt = 24 W (limited by strong power saturation) of baseline ASLOC lasers. The reference ETAS FP lasers also deliver over 10% higher η E at P opt = 24 W. On the other hand, in comparison to the wavelength-stabilized ASLOC DBR lasers, ETAS DBR lasers show a peak power increment from 14 W to 22 W, and an efficiency increment from 46% to 60% at P opt = 14 W. A narrow spectral width (< 1 nm at 95% power content) is maintained across a very wide operating range. Consistent with earlier studies, a narrower far-field divergence angle and consequently an improved beam-parameter product is also observed, compared to the ASLOC-based lasers.