Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Energy-level alignment at interfaces between manganese phthalocyanine and C60

2017-4-25, Waas, Daniel, Rückerl, Florian, Knupfer, Martin, Büchner, Bernd

We have used photoelectron spectroscopy to determine the energy-level alignment at organic heterojunctions made of manganese phthalocyanine (MnPc) and the fullerene C60. We show that this energy-level alignment depends upon the preparation sequence, which is explained by different molecular orientations. Moreover, our results demonstrate that MnPc/C60 interfaces are hardly suited for application in organic photovoltaic devices, since the energy difference of the two lowest unoccupied molecular orbitals (LUMOs) is rather small.

Loading...
Thumbnail Image
Item

Self-heating, bistability, and thermal switching in organic semiconductors

2012, Fischer, Axel, Pahner, Paul, Lüssem, Björn, Scholz, Reinhard, Koprucki, Thomas, Gärtner, Klaus, Glitzky, Annegret

We demonstrate electric bistability induced by the positive feedback of self-heating onto the thermally activated conductivity in a two-terminal device based on the organic semiconductor C60. The central undoped layer with a thickness of 200 nm is embedded between thinner n-doped layers adjacent to the contacts minimizing injection barriers. The observed current-voltage characteristics follow the general theory for thermistors described by an Arrhenius-like conductivity law. Our findings including hysteresis phenomena are of general relevance for the entire material class since most organic semiconductors can be described by a thermally activated conductivity.

Loading...
Thumbnail Image
Item

Self-heating effects in organic semiconductor devices enhanced by positive temperature feedback

2012, Fischer, Axel, Pahner, Paul, Lüssem, Björn, Leo, Karl, Scholz, Reinhard, Koprucki, Thomas, Fuhrmann, Jürgen, Gärtner, Klaus, Glitzky, Annegret

We studied the influence of heating effects in an organic device containing a layer sequence of n-doped / intrinsic / n-doped C60 between crossbar metal electrodes. A strong positive feedback between current and temperature occurs at high current densities beyond 100 A/cm2, as predicted by the extended Gaussian disorder model (EGDM) applicable to organic semiconductors. These devices give a perfect setting for studying the heat transport at high power densities because C60 can withstand temperatures above 200ʿ C. Infrared images of the device and detailed numerical simulations of the heat transport demonstrate that the electrical circuit produces a superposition of a homogeneous power dissipation in the active volume and strong heat sources localized at the contact edges ...