Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

A distributed control problem for a fractional tumor growth model

2019, Colli, Pierluigi, Gilardi, Gianni, Sprekels, Jürgen

In this paper, we study the distributed optimal control of a system of three evolutionary equations involving fractional powers of three self-adjoint, monotone, unbounded linear operators having compact resolvents. The system is a generalization of a Cahn-Hilliard type phase field system modeling tumor growth that has been proposed by Hawkins-Daarud, van der Zee and Oden. The aim of the control process, which could be realized by either administering a drug or monitoring the nutrition, is to keep the tumor cell fraction under control while avoiding possible harm for the patient. In contrast to previous studies, in which the occurring unbounded operators governing the diffusional regimes were all given by the Laplacian with zero Neumann boundary conditions, the operators may in our case be different; more generally, we consider systems with fractional powers of the type that were studied in a recent work by the present authors. In our analysis, we show the Fréchet differentiability of the associated control-to-state operator, establish the existence of solutions to the associated adjoint system, and derive the first-order necessary conditions of optimality for a cost functional of tracking type. © 2019 by the authors.

Loading...
Thumbnail Image
Item

Existence of weak solutions for Cahn-Hilliard systems coupled with elasticity and damage

2010, Heinemann, Christian, Kraus, Christiane

The Cahn-Hilliard model is a typical phase field approach for describing phase separation and coarsening phenomena in alloys. This model has been generalized to the so-called Cahn-Larché system by combining it with elasticity to capture non-neglecting deformation phenomena, which occurs during phase separation in the material. Evolving microstructures such as phase separation and coarsening processes have a strong influence on damage initiation and propagation in alloys. We develop the existing framework of Cahn-Hilliard and Cahn-Larché systems by coupling these systems with a unidirectional evolution inclusion for an internal variable, describing damage processes. After establishing a weak notion of the corresponding evolutionary system, we prove existence of weak solutions for rate-dependent damage processes under certain growth conditions of the energy functional

Loading...
Thumbnail Image
Item

Existence results for diffuse interface models describing phase separation and damage

2010, Heinemann, Christian, Kraus, Christiane

In this paper we analytically investigate Cahn-Hilliard and Allen-Cahn systems which are coupled with elasticity and uni-directional damage processes. We are interested in the case where the free energy contains logarithmic terms of the chemical concentration variable and quadratic terms of the gradient of the damage variable. For elastic Cahn-Hilliard and Allen-Cahn systems coupled with uni-directional damage processes, an appropriate notion of weak solutions is presented as well as an existence result based on certain regularization methods and an higher integrability result for the strain Literaturverz.