Search Results

Now showing 1 - 4 of 4
  • Item
    Self-Assembled Flexible and Integratable 3D Microtubular Asymmetric Supercapacitors
    (Chichester : John Wiley and Sons Ltd, 2019) Li, F.; Wang, J.; Liu, L.; Qu, J.; Li, Y.; Bandari, V.K.; Karnaushenko, D.; Becker, C.; Faghih, M.; Kang, T.; Baunack, S.; Zhu, M.; Zhu, F.; Schmidt, O.G.
    The rapid development of microelectronics has equally rapidly increased the demand for miniaturized energy storage devices. On-chip microsupercapacitors (MSCs), as promising power candidates, possess great potential to complement or replace electrolytic capacitors and microbatteries in various applications. However, the areal capacities and energy densities of the planar MSCs are commonly limited by the low voltage window, the thin layer of the electrode materials and complex fabrication processes. Here, a new-type three-dimensional (3D) tubular asymmetric MSC with small footprint area, high potential window, ultrahigh areal energy density, and long-term cycling stability is fabricated with shapeable materials and photolithographic technologies, which are compatible with modern microelectronic fabrication procedures widely used in industry. Benefiting from the novel architecture, the 3D asymmetric MSC displays an ultrahigh areal capacitance of 88.6 mF cm−2 and areal energy density of 28.69 mW h cm−2, superior to most reported interdigitated MSCs. Furthermore, the 3D tubular MSCs demonstrate remarkable cycling stability and the capacitance retention is up to 91.8% over 12 000 cycles. It is believed that the efficient fabrication methodology can be used to construct various integratable microscale tubular energy storage devices with small footprint area and high performance for miniaturized electronics.
  • Item
    Effect of cation size of binary cation ionic liquid mixtures on capacitive energy storage
    (New York, NY [u.a.] : Elsevier, 2023) Seltmann, Anna; Verkholyak, Taras; Gołowicz, Dariusz; Pameté, Emmanuel; Kuzmak, Andrij; Presser, Volker; Kondrat, Svyatoslav
    Ionic liquid mixtures show promise as electrolytes for supercapacitors with nanoporous electrodes. Herein, we investigate theoretically and with experiments how binary electrolytes comprising a common anion and two types of differently-sized cations affect capacitive energy storage. We find that such electrolytes can enhance the capacitance of single nanopores and nanoporous electrodes under potential differences negative relative to the potential of zero charge. For a two-electrode cell, however, they are beneficial only at low and intermediate cell voltages, while a neat ionic liquid performs better at higher voltages. We reveal subtle effects of how the distribution of pores accessible to different types of ions correlates with charge storage and suggest approaches to increase capacitance and stored energy density with ionic liquid mixtures.
  • Item
    Investigation of emitter homogeneity on laser doped emitters
    (Amsterdam [u.a.] : Elsevier, 2011) Germershausen, S.; Bartholomäus, L.; Seidel, U.; Hanisch, N.; Schieferdecker, A.; Küsters, K.H.; Kittler, M.; Ametowobla, M.; Einsele, F.; Dallmann, G.
    The selective emitter formation by laser doping is a well known process to increase the efficiency of silicon solar cells [1], [2]. For the characterization of laser doped emitters, SIMS (Secondary Ion Mass Spectroscopy) and ECV (Electrochemical Capacitance Voltage Measurement) techniques are used to analyze the emitter profile [3]. It is very difficult to get acceptable result by SIMS on a textured surface, so only ECV can be used. It has been shown, that a charge carrier depth profile can be measured on a homogeneous emitter only by ECV. The use of laser doping results in a non-homogeneous emitter. We have shown that the emitter depth is not just a function of the pulse power, but in addition of the surface structure of the wafer. The texture seems responsible for a strong variability in the doping profile. It has been shown, that the ECV measurement is not applicable to characterize the emitter depth on laser doped areas, because of the microscopic inhomogeneities in the emitter on the macroscopic measurement area. The real emitter profiles are to complex to be characterized by SIMS or ECV. We have shown that the variation in the emitter profile is resulting from the texture in the laser-doped regions.
  • Item
    Studies on the Electrical Behaviour and Removal of Toluene with a Dielectric Barrier Discharge
    (Berlin : de Gruyter, 2014) Schmidt, Michael; Schiorlin, Milko; Brandenburg, Ronny
    This contribution attempts to establish an easy-to-apply non-thermal plasma reactor for efficient toluene removal. Derived from the already established knowledge of the so called Dielectric Barrier Discharge (DBD) Stack Reactor a new model reactor was used in this work. The DBD Stack Reactor is a multi-elements reactor but in this work only one stack element was used to investigate the efficiency and efficacy of toluene removal. In case of reliable results the scalability process for industrial application is already well known. Therefore, laboratory experiments were conducted in dry and wet synthetic air with an admixture of 50 ppm toluene. Along with the toluene removal process the electrical behaviour of the discharge configuration was investigated. It was found that the electrical capacitance of the dielectric barrier changes with variations of the operating voltage. This could be due to the changes in the area of the dielectric barrier which is covered with plasma. Additionally, it was found that the power input into the plasma, at a fixed operating voltage, is proportional to the frequency, which is in agreement with the literature.Regarding the decomposition process, the total removal of toluene was achieved at specific input energy densities of 55 J L-1 under dry conditions and 110 J L-1 under wet conditions. The toluene removal was accompanied by the production of nitric acid (dry conditions) and formic acid (wet conditions). The latter suggested a combination of the plasma reactor with a water scrubber as an approach for total removal of pollutant molecules.