Search Results

Now showing 1 - 5 of 5
  • Item
    Collateral transgression of planetary boundaries due to climate engineering by terrestrial carbon dioxide removal
    (München : European Geopyhsical Union, 2016) Heck, Vera; Donges, Jonathan F.; Lucht, Wolfgang
    The planetary boundaries framework provides guidelines for defining thresholds in environmental variables. Their transgression is likely to result in a shift in Earth system functioning away from the relatively stable Holocene state. As the climate system is approaching critical thresholds of atmospheric carbon, several climate engineering methods are discussed, aiming at a reduction of atmospheric carbon concentrations to control the Earth's energy balance. Terrestrial carbon dioxide removal (tCDR) via afforestation or bioenergy production with carbon capture and storage are part of most climate change mitigation scenarios that limit global warming to less than 2°C. We analyse the co-evolutionary interaction of societal interventions via tCDR and the natural dynamics of the Earth's carbon cycle. Applying a conceptual modelling framework, we analyse how the degree of anticipation of the climate problem and the intensity of tCDR efforts with the aim of staying within a "safe" level of global warming might influence the state of the Earth system with respect to other carbon-related planetary boundaries. Within the scope of our approach, we show that societal management of atmospheric carbon via tCDR can lead to a collateral transgression of the planetary boundary of land system change. Our analysis indicates that the opportunities to remain in a desirable region within carbon-related planetary boundaries only exist for a small range of anticipation levels and depend critically on the underlying emission pathway. While tCDR has the potential to ensure the Earth system's persistence within a carbon-safe operating space under low-emission pathways, it is unlikely to succeed in a business-as-usual scenario.
  • Item
    The mutual dependence of negative emission technologies and energy systems
    (Cambridge : RSC Publ., 2019) Creutzig, Felix; Breyer, Christian; Hilaire, Jérôme; Minx, Jan; Peters, Glen P.; Socolow, Robert
    While a rapid decommissioning of fossil fuel technologies deserves priority, most climate stabilization scenarios suggest that negative emission technologies (NETs) are required to keep global warming well below 2 °C. Yet, current discussions on NETs are lacking a distinct energy perspective. Prominent NETs, such as bioenergy with carbon capture and storage (BECCS) and direct air carbon capture and storage (DACCS), will integrate differently into the future energy system, requiring a concerted research effort to determine adequate means of deployment. In this perspective, we discuss the importance of energy per carbon metrics, factors of future cost development, and the dynamic response of NETs in intermittent energy systems. The energy implications of NETs deployed at scale are massive, and NETs may conceivably impact future energy systems substantially. DACCS outperform BECCS in terms of primary energy required per ton of carbon sequestered. For different assumptions, DACCS displays a sequestration efficiency of 75–100%, whereas BECCS displays a sequestration efficiency of 50–90% or less if indirect land use change is included. Carbon dioxide removal costs of DACCS are considerably higher than BECCS, but if DACCS modularity and granularity helps to foster technological learning to <100$ per tCO2, DACCS may remove CO2 at gigaton scale. DACCS also requires two magnitudes less land than BECCS. Designing NET systems that match intermittent renewable energies will be key for stringent climate change mitigation. Our results contribute to an emerging understanding of NETs that is notably different to that derived from scenario modelling.
  • Item
    Bio-IGCC with CCS as a long-term mitigation option in a coupled energy-system and land-use model
    (Amsterdam [u.a.] : Elsevier, 2011) Klein, D.; Bauer, N.; Bodirsky, B.; Dietrich, J.P.; Popp, A.
    This study analyses the impact of techno-economic performance of the BIGCC process and the effect of different biomass feedstocks on the technology's long term deployment in climate change mitigation scenarios. As the BIGCC technology demands high amounts of biomass raw material it also affects the land-use sector and is dependent on conditions and constraints on the land-use side. To represent the interaction of biomass demand and supply side the global energy-economy-climate model ReMIND is linked to the global land-use model MAgPIE. The link integrates biomass demand and price as well as emission prices and land-use emissions. Results indicate that BIGCC with CCS could serve as an important mitigation option and that it could even be the main bioenergy conversion technology sharing 33% of overall mitigation in 2100. The contribution of BIGCC technology to long-term climate change mitigation is much higher if grass is used as fuel instead of wood, provided that the grass-based process is highly efficient. The capture rate has to significantly exceed 60 % otherwise the technology is not applied. The overall primary energy consumption of biomass reacts much more sensitive to price changes of the biomass than to technoeconomic performance of the BIGCC process. As biomass is mainly used with CCS technologies high amounts of carbon are captured ranging from 130 GtC to 240 GtC (cumulated from 2005-2100) in different scenarios.
  • Item
    The energy and carbon inequality corridor for a 1.5 °C compatible and just Europe
    (Bristol : IOP Publ., 2021-6-15) Jaccard, Ingram S; Pichler, Peter-Paul; Többen, Johannes; Weisz, Helga
    The call for a decent life for all within planetary limits poses a dual challenge: provide all people with the essential resources needed to live well and, collectively, not exceed the source and sink capacity of the biosphere to sustain human societies. We examine the corridor of possible distributions of household energy and carbon footprints that satisfy both minimum energy use for a decent life and available energy supply compatible with the 1.5 °C target in 2050. We estimated household energy and carbon footprints for expenditure deciles for 28 European countries in 2015 by combining data from national household budget surveys with the environmentally-extended multi-regional input–output model EXIOBASE. We found a top-to-bottom decile ratio (90:10) of 7.2 for expenditure, 3.1 for net energy and 2.6 for carbon. The lower inequality of energy and carbon footprints is largely attributable to inefficient energy and heating technologies in the lower deciles (mostly Eastern Europe). Adopting best technology across Europe would save 11 EJ of net energy annually, but increase environmental footprint inequality. With such inequality, both targets can only be met through the use of CCS, large efficiency improvements, and an extremely low minimum final energy use of 28 GJ per adult equivalent. Assuming a more realistic minimum energy use of about 55 GJ ae−1 and no CCS deployment, the 1.5 °C target can only be achieved at near full equality. We conclude that achieving both stated goals is an immense and widely underestimated challenge, the successful management of which requires far greater room for maneuver in monetary and fiscal terms than is reflected in the current European political discourse.
  • Item
    Energy system changes in 1.5 °C, well below 2 °C and 2 °C scenarios
    (Amsterdam : Elsevier, 2019) Gambhir, Ajay; Rogelj, Joeri; Luderer, Gunnar; Few, Sheridan; Napp, Tamaryn
    Meeting the Paris Agreement's goal to limit global warming to well below 2 °C and pursuing efforts towards 1.5 °C is likely to require more rapid and fundamental energy system changes than the previously-agreed 2 °C target. Here we assess over 200 integrated assessment model scenarios which achieve 2 °C and well-below 2 °C targets, drawn from the IPCC's fifth assessment report database combined with a set of 1.5 °C scenarios produced in recent years. We specifically assess differences in a range of near-term indicators describing CO2 emissions reductions pathways, changes in primary energy and final energy across the economy's major sectors, in addition to more detailed metrics around the use of carbon capture and storage (CCS), negative emissions, low-carbon electricity and hydrogen. © 2018 The Authors