Search Results

Now showing 1 - 10 of 10
  • Item
    Characterizing photocatalysts for water splitting: from atoms to bulk and from slow to ultrafast processes
    (London : Royal Society of Chemistry (RSC), 2021) Kranz, Christine; Wächtler, Maria
    Research on light-driven catalysis has gained tremendous importance due to the ever-increasing power consumption and the threatening situation of global warming related to burning fossil fuels. Significant efforts have been dedicated to artificial photosynthesis mimicking nature to split H2O into H2 and O2 by solar energy. Novel semiconductor und molecular photocatalysts focusing on one-step excitation processes via single component photocatalysts or via two-step excitation processes mimicking the Z-scheme of natural photosynthesis are currently developed. Analytical and physicochemical methods, which provide information at different time and length scales, are used to gain fundamental understanding of all processes leading to catalytic activity, i.e., light absorption, charge separation, transfer of charges to the reaction centres and catalytic turnover, but also understanding degradation processes of the photocatalytic active material. Especially, molecular photocatalysts still suffer from limited long-Term stability due to the formation of reactive intermediates, which may lead to degradation. Although there is an overwhelming number of research articles and reviews focussing on various materials for photocatalytic water splitting, to date only few reviews have been published providing a comprehensive overview on methods for characterizing such materials. This review will highlight spectroscopic, spectroelectrochemical, and electrochemical approaches in respect to their potential in studying processes in semiconductor and (supra)molecular photocatalysts. Special emphasis will be on spectroscopic methods to investigate light-induced processes in intermediates of sequential electron transfer chains. Further, microscopic characterization methods, which are predominantly used for semiconducting and hybrid photocatalytic materials will be reviewed as surface area, structure, facets, defects, and bulk properties such as crystallinity and crystal size are key parameters for charge separation, transfer processes and suppression of charge recombination. Recent developments in scanning probe microscopy will also be highlighted as such techniques are highly suited for studying photocatalytic active material. © The Royal Society of Chemistry.
  • Item
    Origins of high catalyst loading in copper(i)-catalysed Ullmann-Goldberg C-N coupling reactions
    (Cambridge : RSC, 2017) Sherborne, Grant J.; Adomeit, Sven; Menzel, Robert; Rabeah, Jabor; Brückner, Angelika; Fielding, Mark R.; Willans, Charlotte E.; Nguyen, Bao N.
    A mechanistic investigation of Ullmann-Goldberg reactions using soluble and partially soluble bases led to the identification of various pathways for catalyst deactivation through (i) product inhibition with amine products, (ii) by-product inhibition with inorganic halide salts, and (iii) ligand exchange by soluble carboxylate bases. The reactions using partially soluble inorganic bases showed variable induction periods, which are responsible for the reproducibility issues in these reactions. Surprisingly, more finely milled Cs2CO3 resulted in a longer induction period due to the higher concentration of the deprotonated amine/amide, leading to suppressed catalytic activity. These results have significant implications on future ligand development for the Ullmann-Goldberg reaction and on the solid form of the inorganic base as an important variable with mechanistic ramifications in many catalytic reactions.
  • Item
    Controlling the speciation and reactivity of carbon-supported gold nanostructures for catalysed acetylene hydrochlorination
    (Cambridge : RSC, 2018) Kaiser, Selina K.; Lin, Ronghe; Mitchell, Sharon; Fako, Edvin; Krumeich, Frank; Hauert, Roland; Safonova, Olga V.; Kondratenko, Vita A.; Kondratenko, Evgenii V.; Collins, Sean M.; Midgley, Paul A.; López, Núria; Pérez-Ramírez, Javier
    Carbon-supported gold catalysts have the potential to replace the toxic mercuric chloride-based system applied industrially for acetylene hydrochlorination, a key technology for the manufacture of polyvinyl chloride. However, the design of an optimal catalyst is essentially hindered by the difficulties in assessing the nature of the active site. Herein, we present a platform of carbon supported gold nanostructures at a fixed metal loading, ranging from single atoms of tunable oxidation state and coordination to metallic nanoparticles, by varying the structure of functionalised carbons and use of thermal activation. While on activated carbon particle aggregation occurs progressively above 473 K, on nitrogen-doped carbon gold single atoms exhibit outstanding stability up to temperatures of 1073 K and under reaction conditions. By combining steady-state experiments, density functional theory, and transient mechanistic studies, we assess the relation between the metal speciation, electronic properties, and catalytic activity. The results indicate that the activity of gold-based catalysts correlates with the population of Au(i)Cl single atoms and the reaction follows a Langmuir-Hinshelwood mechanism. Strong interaction with HCl and thermodynamically favoured acetylene activation were identified as the key features of the Au(i)Cl sites that endow their superior catalytic performance in comparison to N-stabilised Au(iii) counterparts and gold nanoparticles. Finally, we show that the carrier (activated carbon versus nitrogen-doped carbon) does not affect the catalytic response, but determines the deactivation mechanism (gold particle aggregation and pore blockage, respectively), which opens up different options for the development of stable, high-performance hydrochlorination catalysts. © 2019 The Royal Society of Chemistry.
  • Item
    A robust iron catalyst for the selective hydrogenation of substituted (iso)quinolones
    (Cambridge : RSC, 2018) Sahoo, Basudev; Kreyenschulte, Carsten; Agostini, Giovanni; Lund, Henrik; Bachmann, Stephan; Scalone, Michelangelo; Junge, Kathrin; Beller, Matthias
    By applying N-doped carbon modified iron-based catalysts, the controlled hydrogenation of N-heteroarenes, especially (iso)quinolones, is achieved. Crucial for activity is the catalyst preparation by pyrolysis of a carbon-impregnated composite, obtained from iron(ii) acetate and N-aryliminopyridines. As demonstrated by TEM, XRD, XPS and Raman spectroscopy, the synthesized material is composed of Fe(0), Fe3C and FeNx in a N-doped carbon matrix. The decent catalytic activity of this robust and easily recyclable Fe-material allowed for the selective hydrogenation of various (iso)quinoline derivatives, even in the presence of reducible functional groups, such as nitriles, halogens, esters and amides. For a proof-of-concept, this nanostructured catalyst was implemented in the multistep synthesis of natural products and pharmaceutical lead compounds as well as modification of photoluminescent materials. As such this methodology constitutes the first heterogeneous iron-catalyzed hydrogenation of substituted (iso)quinolones with synthetic importance.
  • Item
    Iron/N-doped graphene nano-structured catalysts for general cyclopropanation of olefins
    (Cambridge : RSC, 2020) Sarkar, Abhijnan; Formenti, Dario; Ferretti, Francesco; Kreyenschulte, Carsten; Bartling, Stephan; Junge, Kathrin; Beller, Matthias; Ragaini, Fabio
    The first examples of heterogeneous Fe-catalysed cyclopropanation reactions are presented. Pyrolysis of in situ-generated iron/phenanthroline complexes in the presence of a carbonaceous material leads to specific supported nanosized iron particles, which are effective catalysts for carbene transfer reactions. Using olefins as substrates, cyclopropanes are obtained in high yields and moderate diastereoselectivities. The developed protocol is scalable and the activity of the recycled catalyst after deactivation can be effectively restored using an oxidative reactivation protocol under mild conditions. This journal is © The Royal Society of Chemistry.
  • Item
    Selective cobalt nanoparticles for catalytic transfer hydrogenation of N-heteroarenes
    (Cambridge : RSC, 2017) Chen, Feng; Sahoo, Basudev; Kreyenschulte, Carsten; Lund, Henrik; Zeng, Min; He, Lin; Junge, Kathrin; Beller, Matthias
    Nitrogen modified cobalt catalysts supported on carbon were prepared by pyrolysis of the mixture generated from cobalt(ii) acetate in aqueous solution of melamine or waste melamine resins, which are widely used as industrial polymers. The obtained nanostructured materials catalyze the transfer hydrogenation of N-heteroarenes with formic acid in the absence of base. The optimal Co/Melamine-2@C-700 catalyst exhibits high activity and selectivity for the dehydrogenation of formic acid into molecular hydrogen and carbon dioxide and allows for the reduction of diverse N-heteroarenes including substrates featuring sensitive functional groups.
  • Item
    Sulfonated covalent triazine-based frameworks as catalysts for the hydrolysis of cellobiose to glucose
    (London : RSC Publishing, 2018) Artz, Jens; Delidovich, Irina; Pilaski, Moritz; Niemeier, Johannes; Kübber, Britta Maria; Rahimi, Khosrow; Palkovits, Regina
    Covalent triazine-based frameworks (CTFs) were synthesized in large scale from various monomers. The materials were post-synthetically modified with acid functionalities via gas-phase sulfonation. Acid capacities of up to 0.83 mmol g−1 at sulfonation degrees of up to 10.7 mol% were achieved. Sulfonated CTFs exhibit high specific surface area and porosity as well as excellent thermal stability under aerobic conditions (>300 °C). Successful functionalization was verified investigating catalytic activity in the acid-catalyzed hydrolysis of cellobiose to glucose at 150 °C in H2O. Catalytic activity is mostly affected by porosity, indicating that mesoporosity is beneficial for hydrolysis of cellobiose. Like other sulfonated materials, S-CTFs show low stability under hydrothermal reaction conditions. Recycling of the catalyst is challenging and significant amounts of sulfur leached out of the materials. Nevertheless, gas-phase sulfonation opens a path to tailored solid acids for application in various reactions. S-CTFs form the basis for multi-functional catalysts, containing basic coordination sites for metal catalysts, tunable structural parameters and surface acidity within one sole system.
  • Item
    Hollow Au@TiO2 porous electrospun nanofibers for catalytic applications
    (Cambridge : RSC, 2020) Kumar, Labeesh; Singh, Sajan; Horechyy, Andriy; Formanek, Petr; Hübner, René; Albrecht, Victoria; Weißpflog, Janek; Schwarz, Simona; Puneet, Puhup; Nandan, Bhanu
    Catalytically active porous and hollow titania nanofibers encapsulating gold nanoparticles were fabricated using a combination of sol-gel chemistry and coaxial electrospinning technique. We report the fabrication of catalytically active porous and hollow titania nanofibers encapsulating gold nanoparticles (AuNPs) using a combination of sol-gel chemistry and coaxial electrospinning technique. The coaxial electrospinning involved the use of a mixture of poly(vinyl pyrrolidone) (PVP) and titania sol as the shell forming component, whereas a mixture of poly(4-vinyl pyridine) (P4VP) and pre-synthesized AuNPs constituted the core forming component. The core-shell nanofibers were calcined stepwise up to 600 °C which resulted in decomposition and removal of the organic constituents of the nanofibers. This led to the formation of porous and hollow titania nanofibers, where the catalytic AuNPs were embedded in the inner wall of the titania shell. The catalytic activity of the prepared Au@TiO2 porous nanofibers was investigated using a model reaction of catalytic reduction of 4-nitrophenol and Congo red dye in the presence of NaBH4. The Au@TiO2 porous and hollow nanofibers exhibited excellent catalytic activity and recyclability, and the morphology of the nanofibers remained intact after repeated usage. The presented approach could be a promising route for immobilizing various nanosized catalysts in hollow titania supports for the design of stable catalytic systems where the added photocatalytic activity of titania could further be of significance. This journal is © The Royal Society of Chemistry.
  • Item
    Construction of cost-effective bimetallic nanoparticles on titanium carbides as a superb catalyst for promoting hydrolysis of ammonia borane
    (London : RSC Publishing, 2018) Guo, Zhangwei; Liu, Tong; Wang, Qingtao; Gao, Guanhui
    Bimetallic cost-effective CoNi nanoparticles (NPs) are conveniently supported on titanium carbides (MXene) by a simple one-step wet-chemical method. The synthesized CoNi/MXene catalysts are characterized by XPS, TEM, STEM-HAADF and ICP-AES. The as-prepared CoNi NPs with a size of 2.8 nm are well dispersed on the MXene surface. It is found that among the CoNi bimetallic system, Co0.7Ni0.3 shows the best performance toward catalyzing ammonia borane (AB) decomposition with a turnover frequency value of 87.6 molH2 molcat−1 min−1 at 50 °C. The remarkable catalytic performance is attributed to the mild affiliation of MXene to NPs, which not only stabilizes NPs to maintain a good dispersion but also leaves sufficient surface active sites to facilitate the catalytic reaction.
  • Item
    Endothelium-Mimicking Multifunctional Coating Modified Cardiovascular Stents via a Stepwise Metal-Catechol-(Amine) Surface Engineering Strategy
    (Washington, DC [u.a.] : American Association for the Advancement of Science, 2020) Yang, Ying; Gao, Peng; Wang, Juan; Tu, Qiufen; Bai, Long; Xiong, Kaiqin; Qiu, Hua; Zhao, Xin; Maitz, Manfred F.; Wang, Huaiyu; Li, Xiangyang; Zhao, Qiang; Xiao, Yin; Huang, Nan; Yang, Zhilu
    Stenting is currently the major therapeutic treatment for cardiovascular diseases. However, the nonbiogenic metal stents are inclined to trigger a cascade of cellular and molecular events including inflammatory response, thrombogenic reactions, smooth muscle cell hyperproliferation accompanied by the delayed arterial healing, and poor reendothelialization, thus leading to restenosis along with late stent thrombosis. To address prevalence critical problems, we present an endothelium-mimicking coating capable of rapid regeneration of a competently functioning new endothelial layer on stents through a stepwise metal (copper)-catechol-(amine) (MCA) surface chemistry strategy, leading to combinatorial endothelium-like functions with glutathione peroxidase-like catalytic activity and surface heparinization. Apart from the stable nitric oxide (NO) generating rate at the physiological level (2:2 × 10a'10 mol/cm2/min lasting for 60 days), this proposed strategy could also generate abundant amine groups for allowing a high heparin conjugation efficacy up to ∼1 μg/cm2, which is considerably higher than most of the conventional heparinized surfaces. The resultant coating could create an ideal microenvironment for bringing in enhanced antithrombogenicity, anti-inflammation, anti-proliferation of smooth muscle cells, re-endothelialization by regulating relevant gene expressions, hence preventing restenosis in vivo. We envision that the stepwise MCA coating strategy would facilitate the surface endothelium-mimicking engineering of vascular stents and be therefore helpful in the clinic to reduce complications associated with stenosis. © 2020 American Association for the Advancement of Science. All rights reserved.