Search Results

Now showing 1 - 2 of 2
  • Item
    Polarized recombination of acoustically transported carriers in GaAs nanowires
    (London : BioMed Central, 2012) Möller, Michael; Hernández-Mínguez, Alberto; Breuer, Steffen; Pfüller, Carsten; Brandt, Oliver; de Lima Jr, Mauricio M.; Cantarero, Andrés; Geelhaar, Lutz; Riechert, Henning; Santos, Paulo V.
    The oscillating piezoelectric field of a surface acoustic wave (SAW) is employed to transport photoexcited electrons and holes in GaAs nanowires deposited on a SAW delay line on a LiNbO3 crystal. The carriers generated in the nanowire by a focused light spot are acoustically transferred to a second location where they recombine. We show that the recombination of the transported carriers occurs in a zinc blende section on top of the predominant wurtzite nanowire. This allows contactless control of the linear polarized emission by SAWs which is governed by the crystal structure. Additional polarization-resolved photoluminescence measurements were performed to investigate spin conservation during transport.
  • Item
    Charge transport in organic nanocrystal diodes based on rolled-up robust nanomembrane contacts
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2017-6-19) Bandari, Vineeth Kumar; Varadharajan, Lakshmi; Xu, Longqian; Jalil, Abdur Rehman; Devarajulu, Mirunalini; Siles, Pablo F.; Zhu, Feng; Schmidt, Oliver G.
    The investigation of charge transport in organic nanocrystals is essential to understand nanoscale physical properties of organic systems and the development of novel organic nanodevices. In this work, we fabricate organic nanocrystal diodes contacted by rolled-up robust nanomembranes. The organic nanocrystals consist of vanadyl phthalocyanine and copper hexadecafluorophthalocyanine heterojunctions. The temperature dependent charge transport through organic nanocrystals was investigated to reveal the transport properties of ohmic and space-charge-limited current under different conditions, for instance, temperature and bias