Search Results

Now showing 1 - 5 of 5
  • Item
    Combustion of available fossil fuel resources sufficient to eliminate the Antarctic Ice Sheet
    (Washington, DC [u.a.] : Assoc., 2015) Winkelmann, Ricarda; Levermann, Anders; Ridgwell, Andy; Caldeira, Ken
    The Antarctic Ice Sheet stores water equivalent to 58 m in global sea-level rise. We show in simulations using the Parallel Ice Sheet Model that burning the currently attainable fossil fuel resources is sufficient to eliminate the ice sheet. With cumulative fossil fuel emissions of 10,000 gigatonnes of carbon (GtC), Antarctica is projected to become almost ice-free with an average contribution to sea-level rise exceeding 3 m per century during the first millennium. Consistent with recent observations and simulations, the West Antarctic Ice Sheet becomes unstable with 600 to 800 GtC of additional carbon emissions. Beyond this additional carbon release, the destabilization of ice basins in both West and East Antarctica results in a threshold increase in global sea level. Unabated carbon emissions thus threaten the Antarctic Ice Sheet in its entirety with associated sea-level rise that far exceeds that of all other possible sources.
  • Item
    High-income does not protect against hurricane losses
    (Bristol : IOP Publishing, 2016) Geiger, Tobias; Frieler, Katja; Levermann, Anders
    Damage due to tropical cyclones accounts for more than 50% of all meteorologically-induced economic losses worldwide. Their nominal impact is projected to increase substantially as the exposed population grows, per capita income increases, and anthropogenic climate change manifests. So far, historical losses due to tropical cyclones have been found to increase less than linearly with a nation's affected gross domestic product (GDP). Here we show that for the United States this scaling is caused by a sub-linear increase with affected population while relative losses scale super-linearly with per capita income. The finding is robust across a multitude of empirically derived damage models that link the storm's wind speed, exposed population, and per capita GDP to reported losses. The separation of both socio-economic predictors strongly affects the projection of potential future hurricane losses. Separating the effects of growth in population and per-capita income, per hurricane losses with respect to national GDP are projected to triple by the end of the century under unmitigated climate change, while they are estimated to decrease slightly without the separation.
  • Item
    Reply to Comment on 'High-income does not protect against hurricane losses'
    (Bristol : IOP Publishing, 2017) Geiger, Tobias; Frieler, Katja; Levermann, Anders
    Recently a multitude of empirically derived damage models have been applied to project future tropical cyclone (TC) losses for the United States. In their study (Geiger et al 2016 Environ. Res. Lett. 11 084012) compared two approaches that differ in the scaling of losses with socio-economic drivers: the commonly-used approach resulting in a sub-linear scaling of historical TC losses with a nation's affected gross domestic product (GDP), and the disentangled approach that shows a sub-linear increase with affected population and a super-linear scaling of relative losses with per capita income. Statistics cannot determine which approach is preferable but since process understanding demands that there is a dependence of the loss on both GDP per capita and population, an approach that accounts for both separately is preferable to one which assumes a specific relation between the two dependencies. In the accompanying comment, Rybski et al argued that there is no rigorous evidence to reach the conclusion that high-income does not protect against hurricane losses. Here we affirm that our conclusion is drawn correctly and reply to further remarks raised in the comment, highlighting the adequateness of our approach but also the potential for future extension of our research.
  • Item
    Non-linear intensification of Sahel rainfall as a possible dynamic response to future warming
    (MĂĽnchen : European Geopyhsical Union, 2017) Schewe, Jacob; Levermann, Anders
    Projections of the response of Sahel rainfall to future global warming diverge significantly. Meanwhile, paleoclimatic records suggest that Sahel rainfall is capable of abrupt transitions in response to gradual forcing. Here we present climate modeling evidence for the possibility of an abrupt intensification of Sahel rainfall under future climate change. Analyzing 30 coupled global climate model simulations, we identify seven models where central Sahel rainfall increases by 40 to 300% over the 21st century, owing to a northward expansion of the West African monsoon domain. Rainfall in these models is non-linearly related to sea surface temperature (SST) in the tropical Atlantic and Mediterranean moisture source regions, intensifying abruptly beyond a certain SST warming level. We argue that this behavior is consistent with a self-amplifying dynamic–thermodynamical feedback, implying that the gradual increase in oceanic moisture availability under warming could trigger a sudden intensification of monsoon rainfall far inland of today's core monsoon region.
  • Item
    Enhanced economic connectivity to foster heat stress-related losses
    (Washington, DC : American Association for the Advancement of Science, 2016) Wenz, Leonie; Levermann, Anders
    Assessing global impacts of unexpected meteorological events in an increasingly connected world economy is important for estimating the costs of climate change. We show that since the beginning of the 21st century, the structural evolution of the global supply network has been such as to foster an increase of climate-related production losses. We compute first- and higher-order losses from heat stress–induced reductions in productivity under changing economic and climatic conditions between 1991 and 2011. Since 2001, the economic connectivity has augmented in such a way as to facilitate the cascading of production loss. The influence of this structural change has dominated over the effect of the comparably weak climate warming during this decade. Thus, particularly under future warming, the intensification of international trade has the potential to amplify climate losses if no adaptation measures are taken.