Search Results

Now showing 1 - 4 of 4
  • Item
    A review of the potential climate change impacts and adaptation options for European viticulture
    (Basel : MDPI, 2020) Santos, João A.; Fraga, Helder; Malheiro, Aureliano C.; Moutinho-Pereira, José; Dinis, Lia-Tânia; Correia, Carlos; Moriondo, Marco; Leolini, Luisa; Dibari, Camilla; Costafreda-Aumedes, Sergi; Kartschall, Thomas; Menz, Christoph; Molitor, Daniel; Junk, Jürgen; Beyer, Marco; Schultz, Hans R.
    Viticulture and winemaking are important socioeconomic sectors in many European regions. Climate plays a vital role in the terroir of a given wine region, as it strongly controls canopy microclimate, vine growth, vine physiology, yield, and berry composition, which together determine wine attributes and typicity. New challenges are, however, predicted to arise from climate change, as grapevine cultivation is deeply dependent on weather and climate conditions. Changes in viticultural suitability over the last decades, for viticulture in general or the use of specific varieties, have already been reported for many wine regions. Despite spatially heterogeneous impacts, climate change is anticipated to exacerbate these recent trends on suitability for wine production. These shifts may reshape the geographical distribution of wine regions, while wine typicity may also be threatened in most cases. Changing climates will thereby urge for the implementation of timely, suitable, and cost-effective adaptation strategies, which should also be thoroughly planned and tuned to local conditions for an effective risk reduction. Although the potential of the different adaptation options is not yet fully investigated, deserving further research activities, their adoption will be of utmost relevance to maintain the socioeconomic and environmental sustainability of the highly valued viticulture and winemaking sector in Europe. © 2020 by the authors.
  • Item
    Low-cost adaptation options to support green growth in agriculture, water resources, and coastal zones
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2022) Salack, Seyni; Sanfo, Safiétou; Sidibe, Moussa; Daku, Elidaa K.; Camara, Ibrahima; Dieng, Mame Diarra Bousso; Hien, Koufanou; Torou, Bio Mohamadou; Ogunjobi, Kehinde O.; Sangare, Sheick Ahmed Khalil S. B.; Kouame, Konan Raoul; Koffi, Yao Bernard; Liersch, Stefan; Savadogo, Moumini; Giannini, Alessandra
    The regional climate as it is now and in the future will put pressure on investments in sub-Saharan Africa in water resource management, fisheries, and other crop and livestock production systems. Changes in oceanic characteristics across the Atlantic Ocean will result in remarkable vulnerability of coastal ecology, littorals, and mangroves in the middle of the twenty-first century and beyond. In line with the countries' objectives of creating a green economy that allows reduced greenhouse gas emissions, improved resource efficiency, and prevention of biodiversity loss, we identify the most pressing needs for adaptation and the best adaptation choices that are also clean and affordable. According to empirical data from the field and customized model simulation designs, the cost of these adaptation measures will likely decrease and benefit sustainable green growth in agriculture, water resource management, and coastal ecosystems, as hydroclimatic hazards such as pluviometric and thermal extremes become more common in West Africa. Most of these adaptation options are local and need to be scaled up and operationalized for sustainable development. Governmental sovereign wealth funds, investments from the private sector, and funding from global climate funds can be used to operationalize these adaptation measures. Effective legislation, knowledge transfer, and pertinent collaborations are necessary for their success.
  • Item
    CHASE-PL—Future Hydrology Data Set: Projections of Water Balance and Streamflow for the Vistula and Odra Basins, Poland
    (Basel : MDPI, 2017) Piniewski, Mikołaj; Szcześniak, Mateusz; Kardel, Ignacy
    There is considerable concern that the water resources of Central and Eastern Europe region can be adversely affected by climate change. Projections of future water balance and streamflow conditions can be obtained by forcing hydrological models with the output from climate models. In this study, we employed the SWAT hydrological model driven with an ensemble of nine bias-corrected EURO-CORDEX climate simulations to generate future hydrological projections for the Vistula and Odra basins in two future horizons (2024–2050 and 2074–2100) under two Representative Concentration Pathways (RCPs). The data set consists of three parts: (1) model inputs; (2) raw model outputs; (3) aggregated model outputs. The first one allows the users to reproduce the outputs or to create the new ones. The second one contains the simulated time series of 10 variables simulated by SWAT: precipitation, snow melt, potential evapotranspiration, actual evapotranspiration, soil water content, percolation, surface runoff, baseflow, water yield and streamflow. The third one consists of the multi-model ensemble statistics of the relative changes in mean seasonal and annual variables developed in a GIS format. The data set should be of interest of climate impact scientists, water managers and water-sector policy makers. In any case, it should be noted that projections included in this data set are associated with high uncertainties explained in this data descriptor paper.
  • Item
    Case Study Report "The Renewable Energy Sector: Solar PV Market"
    (Hamilton, NZ : University of Waikato, 2017-03-26) Gogoi Saikia, Madhumita; Fang, Molly; Deraman, Mohd. Yusoff Bin; Carson, Tayla; Taylor, Wanida; Fang, Yixuan
    The renewable energy industry is the future of power consumption. Green electricity or renewable energy is generated from natural resources which has less environment impact to our Earth compared to fossil fuel energy. Using renewable energy reduces the amount of carbon dioxide into the atmosphere. These will help to reduce climate change or global warming. Renewable energy sources like solar energy will reduce our dependence on fossil fuels and noble gases which are in a current state of depletion (Uswitch, 2017). The solar photovoltaic (PV) systems harness the solar energy from the sun and convert this to usable electricity. These systems have a huge amount of growth potential with exponential growth in population and a constant need for power supplies. There has been a steady increase in the current growth of solar PV systems with no indication of a future decline. It was found that this technology is more viable in Asian countries due to low production and wage costs for labour. The main variables causing growth in this sector is population growth and increased per capita income. There are also continuous environmental public policies being set which favour the use of renewable energy resources including solar PV systems. Crystalline silica is the most common main component used needed to produce these systems and the changing cost of this will affect the future market. Using Porter’s competitive model, it was found that the rivalry among competitors is medium to high. There is little threat of substitute products entering the market. Suppliers possess medium to high level of power to bargain. There has been an increasing number of installation of solar PV panels which indicates that in the future the bargaining power of customers could be considerably high. The price elasticity for the solar market was found to be relatively high. Overall there is high potential for growth within this industry and no indication that there would be a decline in the years to come.