Search Results

Now showing 1 - 6 of 6
  • Item
    Are we using the right fuel to drive hydrological models? A climate impact study in the Upper Blue Nile
    (Göttingen : Copernicus GmbH, 2018) Liersch, S.; Tecklenburg, J.; Rust, H.; Dobler, A.; Fischer, M.; Kruschke, T.; Koch, H.; Hattermann, F.F.
    Climate simulations are the fuel to drive hydrological models that are used to assess the impacts of climate change and variability on hydrological parameters, such as river discharges, soil moisture, and evapotranspiration. Unlike with cars, where we know which fuel the engine requires, we never know in advance what unexpected side effects might be caused by the fuel we feed our models with. Sometimes we increase the fuel's octane number (bias correction) to achieve better performance and find out that the model behaves differently but not always as was expected or desired. This study investigates the impacts of projected climate change on the hydrology of the Upper Blue Nile catchment using two model ensembles consisting of five global CMIP5 Earth system models and 10 regional climate models (CORDEX Africa). WATCH forcing data were used to calibrate an eco-hydrological model and to bias-correct both model ensembles using slightly differing approaches. On the one hand it was found that the bias correction methods considerably improved the performance of average rainfall characteristics in the reference period (1970-1999) in most of the cases. This also holds true for non-extreme discharge conditions between Q20 and Q80. On the other hand, bias-corrected simulations tend to overemphasize magnitudes of projected change signals and extremes. A general weakness of both uncorrected and bias-corrected simulations is the rather poor representation of high and low flows and their extremes, which were often deteriorated by bias correction. This inaccuracy is a crucial deficiency for regional impact studies dealing with water management issues and it is therefore important to analyse model performance and characteristics and the effect of bias correction, and eventually to exclude some climate models from the ensemble. However, the multi-model means of all ensembles project increasing average annual discharges in the Upper Blue Nile catchment and a shift in seasonal patterns, with decreasing discharges in June and July and increasing discharges from August to November.
  • Item
    Comparing impacts of climate change on streamflow in four large African river basins
    (Göttingen : Copernicus GmbH, 2014) Aich, V.; Liersch, S.; Vetter, T.; Huang, S.; Tecklenburg, J.; Hoffmann, P.; Koch, H.; Fournet, S.; Krysanova, V.; Müller, E.N.; Hattermann, F.F.
    This study aims to compare impacts of climate change on streamflow in four large representative African river basins: the Niger, the Upper Blue Nile, the Oubangui and the Limpopo. We set up the eco-hydrological model SWIM (Soil and Water Integrated Model) for all four basins individually. The validation of the models for four basins shows results from adequate to very good, depending on the quality and availability of input and calibration data.

    For the climate impact assessment, we drive the model with outputs of five bias corrected Earth system models of Coupled Model Intercomparison Project Phase 5 (CMIP5) for the representative concentration pathways (RCPs) 2.6 and 8.5. This climate input is put into the context of climate trends of the whole African continent and compared to a CMIP5 ensemble of 19 models in order to test their representativeness. Subsequently, we compare the trends in mean discharges, seasonality and hydrological extremes in the 21st century. The uncertainty of results for all basins is high. Still, climate change impact is clearly visible for mean discharges but also for extremes in high and low flows. The uncertainty of the projections is the lowest in the Upper Blue Nile, where an increase in streamflow is most likely. In the Niger and the Limpopo basins, the magnitude of trends in both directions is high and has a wide range of uncertainty. In the Oubangui, impacts are the least significant. Our results confirm partly the findings of previous continental impact analyses for Africa. However, contradictory to these studies we find a tendency for increased streamflows in three of the four basins (not for the Oubangui). Guided by these results, we argue for attention to the possible risks of increasing high flows in the face of the dominant water scarcity in Africa. In conclusion, the study shows that impact intercomparisons have added value to the adaptation discussion and may be used for setting up adaptation plans in the context of a holistic approach.
  • Item
    Mediterranean irrigation under climate change: More efficient irrigation needed to compensate for increases in irrigation water requirements
    (Göttingen : Copernicus GmbH, 2016) Fader, M.; Shi, S.; Von Bloh, W.; Bondeau, A.; Cramer, W.
  • Item
    Climate change track in river floods in Europe
    (Göttingen : Copernicus GmbH, 2015) Kundzewicz, Z.W.
  • Item
    Hydrological extremes and security
    (Göttingen : Copernicus GmbH, 2015) Kundzewicz, Z.W.; Matczak, P.
  • Item
    Impacts of future deforestation and climate change on the hydrology of the Amazon Basin: A multi-model analysis with a new set of land-cover change scenarios
    (Göttingen : Copernicus GmbH, 2017) Guimberteau, M.; Ciais, P.; Pablo, Boisier, J.; Paula Dutra Aguiar, A.; Biemans, H.; De Deurwaerder, H.; Galbraith, D.; Kruijt, B.; Langerwisch, F.; Poveda, G.; Rammig, A.; Andres Rodriguez, D.; Tejada, G.; Thonicke, K.; Von, Randow, C.; Randow, R.; Zhang, K.; Verbeeck, H.
    Deforestation in Amazon is expected to decrease evapotranspiration (ET) and to increase soil moisture and river discharge under prevailing energy-limited conditions. The magnitude and sign of the response of ET to deforestation depend both on the magnitude and regional patterns of land-cover change (LCC), as well as on climate change and CO2 levels. On the one hand, elevated CO2 decreases leaf-scale transpiration, but this effect could be offset by increased foliar area density. Using three regional LCC scenarios specifically established for the Brazilian and Bolivian Amazon, we investigate the impacts of climate change and deforestation on the surface hydrology of the Amazon Basin for this century, taking 2009 as a reference. For each LCC scenario, three land surface models (LSMs), LPJmL-DGVM, INLAND-DGVM and ORCHIDEE, are forced by bias-corrected climate simulated by three general circulation models (GCMs) of the IPCC 4th Assessment Report (AR4). On average, over the Amazon Basin with no deforestation, the GCM results indicate a temperature increase of 3.3ĝ€°C by 2100 which drives up the evaporative demand, whereby precipitation increases by 8.5 %, with a large uncertainty across GCMs. In the case of no deforestation, we found that ET and runoff increase by 5.0 and 14ĝ€%, respectively. However, in south-east Amazonia, precipitation decreases by 10ĝ€% at the end of the dry season and the three LSMs produce a 6ĝ€% decrease of ET, which is less than precipitation, so that runoff decreases by 22 %. For instance, the minimum river discharge of the Rio Tapajós is reduced by 31ĝ€% in 2100. To study the additional effect of deforestation, we prescribed to the LSMs three contrasted LCC scenarios, with a forest decline going from 7 to 34ĝ€% over this century. All three scenarios partly offset the climate-induced increase of ET, and runoff increases over the entire Amazon. In the south-east, however, deforestation amplifies the decrease of ET at the end of dry season, leading to a large increase of runoff (up to +27ĝ€% in the extreme deforestation case), offsetting the negative effect of climate change, thus balancing the decrease of low flows in the Rio Tapajós. These projections are associated with large uncertainties, which we attribute separately to the differences in LSMs, GCMs and to the uncertain range of deforestation. At the subcatchment scale, the uncertainty range on ET changes is shown to first depend on GCMs, while the uncertainty of runoff projections is predominantly induced by LSM structural differences. By contrast, we found that the uncertainty in both ET and runoff changes attributable to uncertain future deforestation is low.